Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer

灰度 阈值 计算机科学 大津法 图像分割 人工智能 分割 多目标优化 模式识别(心理学) 元启发式 帕累托原理 图像(数学) 平衡直方图阈值法 图像处理 数学优化 数学 机器学习 直方图均衡化
作者
Mohamed Abd Elaziz,Diego Oliva,Ahmed A. Ewees,Shengwu Xiong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:125: 112-129 被引量:90
标识
DOI:10.1016/j.eswa.2019.01.047
摘要

Image segmentation is among the most important techniques in image processing, and many methods have been developed to perform this task. This paper presents a new multi-objective metaheuristic based on a multi-verse optimization algorithm to segment grayscale images via multi-level thresholding. The proposed approach involves finding an approximate Pareto-optimal set by maximizing the Kapur and Otsu objective functions. Both Kapur's and Otsu's methods are highly used for image segmentation performed by means of bi-level and multi-level thresholding. However, each of them has certain characteristics and limitations. Several metaheuristic approaches have been proposed in the literature to separately optimize these objective functions in terms of accuracy, whereas only a few multi-objective approaches have explored the benefits of the joint use of Kapur and Otsu's methods. However, the computational cost of Kapur and Otsu is high and their accuracy needs to be improved. The proposed method, called Multi-objective Multi-verse Optimization, avoids these limitations. It was tested using 11 natural grayscale images and its performance was compared against three of well-known multi-objective algorithms. The results were analyzed based on two sets of measures, one to assess the performance of the proposed method as a multi-objective algorithm, and the other to evaluate the accuracy of the segmented images. The results showed that the proposed method provides a better approximation to the optimal Pareto Front than the other algorithms in terms of hypervolume and spacing. Moreover, the quality of its segmented image is better than those of the other methods in terms of uniformity measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZGVzn完成签到,获得积分10
2秒前
eve完成签到,获得积分10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
慕容杏子完成签到,获得积分10
11秒前
xiaoyan完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
争气完成签到 ,获得积分10
12秒前
雪妮完成签到 ,获得积分10
13秒前
滴滴完成签到 ,获得积分10
17秒前
陶醉的羞花完成签到 ,获得积分10
17秒前
xiong完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
hwa完成签到,获得积分10
23秒前
25秒前
发文章鸭完成签到 ,获得积分10
26秒前
sa1t发布了新的文献求助20
26秒前
馆长举报heyudian求助涉嫌违规
27秒前
邪恶青年完成签到,获得积分10
27秒前
高志远完成签到,获得积分20
27秒前
darcy完成签到,获得积分10
28秒前
mojomars完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
meng完成签到,获得积分10
31秒前
修狗狗完成签到,获得积分10
33秒前
33秒前
欢呼白晴完成签到 ,获得积分10
34秒前
woshibyu发布了新的文献求助10
35秒前
老张发布了新的文献求助10
37秒前
murphy完成签到,获得积分10
37秒前
37秒前
qiaoxi完成签到,获得积分10
42秒前
ZH完成签到,获得积分10
43秒前
heqingjun完成签到,获得积分10
43秒前
木木完成签到,获得积分10
44秒前
Asumita完成签到,获得积分10
44秒前
44秒前
量子星尘发布了新的文献求助10
46秒前
晴空万里完成签到 ,获得积分10
46秒前
dejiangcj完成签到 ,获得积分10
46秒前
风笛完成签到 ,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597638
求助须知:如何正确求助?哪些是违规求助? 4009167
关于积分的说明 12409939
捐赠科研通 3688401
什么是DOI,文献DOI怎么找? 2033184
邀请新用户注册赠送积分活动 1066430
科研通“疑难数据库(出版商)”最低求助积分说明 951650