Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer

灰度 阈值 计算机科学 大津法 图像分割 人工智能 分割 多目标优化 模式识别(心理学) 元启发式 帕累托原理 图像(数学) 平衡直方图阈值法 图像处理 数学优化 数学 机器学习 直方图均衡化
作者
Mohamed Abd Elaziz,Diego Oliva,Ahmed A. Ewees,Shengwu Xiong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:125: 112-129 被引量:90
标识
DOI:10.1016/j.eswa.2019.01.047
摘要

Image segmentation is among the most important techniques in image processing, and many methods have been developed to perform this task. This paper presents a new multi-objective metaheuristic based on a multi-verse optimization algorithm to segment grayscale images via multi-level thresholding. The proposed approach involves finding an approximate Pareto-optimal set by maximizing the Kapur and Otsu objective functions. Both Kapur's and Otsu's methods are highly used for image segmentation performed by means of bi-level and multi-level thresholding. However, each of them has certain characteristics and limitations. Several metaheuristic approaches have been proposed in the literature to separately optimize these objective functions in terms of accuracy, whereas only a few multi-objective approaches have explored the benefits of the joint use of Kapur and Otsu's methods. However, the computational cost of Kapur and Otsu is high and their accuracy needs to be improved. The proposed method, called Multi-objective Multi-verse Optimization, avoids these limitations. It was tested using 11 natural grayscale images and its performance was compared against three of well-known multi-objective algorithms. The results were analyzed based on two sets of measures, one to assess the performance of the proposed method as a multi-objective algorithm, and the other to evaluate the accuracy of the segmented images. The results showed that the proposed method provides a better approximation to the optimal Pareto Front than the other algorithms in terms of hypervolume and spacing. Moreover, the quality of its segmented image is better than those of the other methods in terms of uniformity measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助nuo采纳,获得10
刚刚
刚刚
甜美小蕾发布了新的文献求助10
刚刚
现代书雪发布了新的文献求助10
1秒前
1秒前
动听的人英完成签到 ,获得积分10
1秒前
屈苞络完成签到 ,获得积分10
2秒前
2秒前
2秒前
yoyo发布了新的文献求助10
2秒前
小宝完成签到,获得积分10
2秒前
3秒前
3秒前
投机倒把发布了新的文献求助10
4秒前
godsence发布了新的文献求助10
4秒前
优雅的胡萝卜完成签到 ,获得积分10
4秒前
找不到文献完成签到,获得积分20
5秒前
浅尝离白应助lvlei采纳,获得30
6秒前
能干夏波发布了新的文献求助10
7秒前
思源应助现代书雪采纳,获得10
7秒前
开心友儿发布了新的文献求助10
7秒前
DongZhikai应助甜美小蕾采纳,获得10
8秒前
水何澹澹完成签到,获得积分0
9秒前
10秒前
飞鱼z完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
leozhao完成签到,获得积分10
11秒前
11秒前
孙旭发布了新的文献求助10
14秒前
14秒前
HD完成签到,获得积分10
14秒前
111发布了新的文献求助20
14秒前
能干夏波完成签到,获得积分10
15秒前
15秒前
ww发布了新的文献求助10
15秒前
开心友儿完成签到,获得积分10
16秒前
柯镇恶完成签到,获得积分10
16秒前
17秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141001
求助须知:如何正确求助?哪些是违规求助? 2791912
关于积分的说明 7800960
捐赠科研通 2448184
什么是DOI,文献DOI怎么找? 1302459
科研通“疑难数据库(出版商)”最低求助积分说明 626588
版权声明 601226