Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer

灰度 阈值 计算机科学 大津法 图像分割 人工智能 分割 多目标优化 模式识别(心理学) 元启发式 帕累托原理 图像(数学) 平衡直方图阈值法 图像处理 数学优化 数学 机器学习 直方图均衡化
作者
Mohamed Abd Elaziz,Diego Oliva,Ahmed A. Ewees,Shengwu Xiong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:125: 112-129 被引量:90
标识
DOI:10.1016/j.eswa.2019.01.047
摘要

Image segmentation is among the most important techniques in image processing, and many methods have been developed to perform this task. This paper presents a new multi-objective metaheuristic based on a multi-verse optimization algorithm to segment grayscale images via multi-level thresholding. The proposed approach involves finding an approximate Pareto-optimal set by maximizing the Kapur and Otsu objective functions. Both Kapur's and Otsu's methods are highly used for image segmentation performed by means of bi-level and multi-level thresholding. However, each of them has certain characteristics and limitations. Several metaheuristic approaches have been proposed in the literature to separately optimize these objective functions in terms of accuracy, whereas only a few multi-objective approaches have explored the benefits of the joint use of Kapur and Otsu's methods. However, the computational cost of Kapur and Otsu is high and their accuracy needs to be improved. The proposed method, called Multi-objective Multi-verse Optimization, avoids these limitations. It was tested using 11 natural grayscale images and its performance was compared against three of well-known multi-objective algorithms. The results were analyzed based on two sets of measures, one to assess the performance of the proposed method as a multi-objective algorithm, and the other to evaluate the accuracy of the segmented images. The results showed that the proposed method provides a better approximation to the optimal Pareto Front than the other algorithms in terms of hypervolume and spacing. Moreover, the quality of its segmented image is better than those of the other methods in terms of uniformity measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阅遍SCI完成签到,获得积分10
刚刚
yss发布了新的文献求助10
刚刚
yss发布了新的文献求助10
刚刚
yss发布了新的文献求助10
刚刚
茸茸茸发布了新的文献求助10
刚刚
yss发布了新的文献求助10
2秒前
yss发布了新的文献求助10
2秒前
yss发布了新的文献求助10
2秒前
yss发布了新的文献求助10
2秒前
zzwwill完成签到,获得积分10
2秒前
3秒前
晨宇王发布了新的文献求助10
4秒前
大个应助zd采纳,获得10
5秒前
Rlawlight完成签到,获得积分10
9秒前
归尘发布了新的文献求助10
9秒前
9秒前
机智谷蕊完成签到,获得积分10
10秒前
专注的映萱完成签到,获得积分10
11秒前
BowieHuang应助小易采纳,获得30
14秒前
爆米花应助宋相甫采纳,获得10
16秒前
侯总发布了新的文献求助10
16秒前
研友_Lpvx3Z发布了新的文献求助10
16秒前
bkagyin应助kk采纳,获得10
17秒前
18秒前
19秒前
危机的盼晴完成签到,获得积分10
19秒前
20秒前
无花果应助111采纳,获得10
20秒前
传奇3应助Afliea采纳,获得10
20秒前
21秒前
Rlawlight发布了新的文献求助80
24秒前
xx发布了新的文献求助10
24秒前
24秒前
24秒前
27秒前
穆行恶发布了新的文献求助10
27秒前
Hello应助纠结不纠结采纳,获得10
28秒前
蔡蔡发布了新的文献求助10
29秒前
29秒前
科研通AI6应助乐in林采纳,获得30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329