亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer

灰度 阈值 计算机科学 大津法 图像分割 人工智能 分割 多目标优化 模式识别(心理学) 元启发式 帕累托原理 图像(数学) 平衡直方图阈值法 图像处理 数学优化 数学 机器学习 直方图均衡化
作者
Mohamed Abd Elaziz,Diego Oliva,Ahmed A. Ewees,Shengwu Xiong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:125: 112-129 被引量:90
标识
DOI:10.1016/j.eswa.2019.01.047
摘要

Image segmentation is among the most important techniques in image processing, and many methods have been developed to perform this task. This paper presents a new multi-objective metaheuristic based on a multi-verse optimization algorithm to segment grayscale images via multi-level thresholding. The proposed approach involves finding an approximate Pareto-optimal set by maximizing the Kapur and Otsu objective functions. Both Kapur's and Otsu's methods are highly used for image segmentation performed by means of bi-level and multi-level thresholding. However, each of them has certain characteristics and limitations. Several metaheuristic approaches have been proposed in the literature to separately optimize these objective functions in terms of accuracy, whereas only a few multi-objective approaches have explored the benefits of the joint use of Kapur and Otsu's methods. However, the computational cost of Kapur and Otsu is high and their accuracy needs to be improved. The proposed method, called Multi-objective Multi-verse Optimization, avoids these limitations. It was tested using 11 natural grayscale images and its performance was compared against three of well-known multi-objective algorithms. The results were analyzed based on two sets of measures, one to assess the performance of the proposed method as a multi-objective algorithm, and the other to evaluate the accuracy of the segmented images. The results showed that the proposed method provides a better approximation to the optimal Pareto Front than the other algorithms in terms of hypervolume and spacing. Moreover, the quality of its segmented image is better than those of the other methods in terms of uniformity measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
PP发布了新的文献求助10
8秒前
PP关闭了PP文献求助
17秒前
19秒前
20秒前
lhr发布了新的文献求助30
24秒前
25秒前
31秒前
Jankin完成签到 ,获得积分10
32秒前
Fan应助lhr采纳,获得10
39秒前
顾矜应助lhr采纳,获得10
39秒前
45秒前
PP完成签到,获得积分10
46秒前
YifanWang应助科研通管家采纳,获得30
52秒前
YifanWang应助科研通管家采纳,获得30
52秒前
YifanWang应助科研通管家采纳,获得30
52秒前
YifanWang应助科研通管家采纳,获得30
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
YifanWang应助科研通管家采纳,获得30
52秒前
丘比特应助木昜采纳,获得10
58秒前
1分钟前
1分钟前
1分钟前
如意蚂蚁发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Jasper应助Karol采纳,获得10
1分钟前
Raunio完成签到,获得积分10
1分钟前
Criminology34举报旺旺雪饼求助涉嫌违规
1分钟前
1分钟前
1分钟前
Gossip完成签到,获得积分10
2分钟前
2分钟前
Gossip发布了新的文献求助30
2分钟前
2分钟前
ttxxcdx完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Fan应助fuyaoye2010采纳,获得10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746780
求助须知:如何正确求助?哪些是违规求助? 5438963
关于积分的说明 15355882
捐赠科研通 4886788
什么是DOI,文献DOI怎么找? 2627441
邀请新用户注册赠送积分活动 1575905
关于科研通互助平台的介绍 1532642