已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer

灰度 阈值 计算机科学 大津法 图像分割 人工智能 分割 多目标优化 模式识别(心理学) 元启发式 帕累托原理 图像(数学) 平衡直方图阈值法 图像处理 数学优化 数学 机器学习 直方图均衡化
作者
Mohamed Abd Elaziz,Diego Oliva,Ahmed A. Ewees,Shengwu Xiong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:125: 112-129 被引量:90
标识
DOI:10.1016/j.eswa.2019.01.047
摘要

Image segmentation is among the most important techniques in image processing, and many methods have been developed to perform this task. This paper presents a new multi-objective metaheuristic based on a multi-verse optimization algorithm to segment grayscale images via multi-level thresholding. The proposed approach involves finding an approximate Pareto-optimal set by maximizing the Kapur and Otsu objective functions. Both Kapur's and Otsu's methods are highly used for image segmentation performed by means of bi-level and multi-level thresholding. However, each of them has certain characteristics and limitations. Several metaheuristic approaches have been proposed in the literature to separately optimize these objective functions in terms of accuracy, whereas only a few multi-objective approaches have explored the benefits of the joint use of Kapur and Otsu's methods. However, the computational cost of Kapur and Otsu is high and their accuracy needs to be improved. The proposed method, called Multi-objective Multi-verse Optimization, avoids these limitations. It was tested using 11 natural grayscale images and its performance was compared against three of well-known multi-objective algorithms. The results were analyzed based on two sets of measures, one to assess the performance of the proposed method as a multi-objective algorithm, and the other to evaluate the accuracy of the segmented images. The results showed that the proposed method provides a better approximation to the optimal Pareto Front than the other algorithms in terms of hypervolume and spacing. Moreover, the quality of its segmented image is better than those of the other methods in terms of uniformity measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禹依白发布了新的文献求助10
刚刚
禹依白完成签到,获得积分10
5秒前
喜悦的小土豆完成签到 ,获得积分10
8秒前
汉堡包应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
lily应助科研通管家采纳,获得10
10秒前
19秒前
19秒前
Dritsw应助笑点低紊采纳,获得20
20秒前
lihuahui发布了新的文献求助10
24秒前
幽悠梦儿发布了新的文献求助10
25秒前
26秒前
学者风范完成签到 ,获得积分10
30秒前
啊大大完成签到,获得积分10
31秒前
luyuhao3完成签到,获得积分10
34秒前
KIKI完成签到 ,获得积分10
34秒前
排骨大王完成签到,获得积分10
38秒前
Fine完成签到,获得积分10
39秒前
哈哈完成签到 ,获得积分10
42秒前
xx完成签到 ,获得积分10
42秒前
skbkbe完成签到 ,获得积分10
45秒前
HCCha完成签到,获得积分10
46秒前
思源应助lihuahui采纳,获得10
46秒前
HS完成签到,获得积分10
47秒前
李金奥完成签到 ,获得积分10
50秒前
zyzraylene完成签到,获得积分10
59秒前
动人的向松完成签到 ,获得积分10
1分钟前
雨雨雨雨雨文完成签到 ,获得积分10
1分钟前
爱学习的YY完成签到 ,获得积分10
1分钟前
wangjun完成签到,获得积分10
1分钟前
Sy发布了新的文献求助10
1分钟前
尊敬的怀曼完成签到,获得积分10
1分钟前
雪白的面包完成签到 ,获得积分10
1分钟前
1分钟前
月月鸟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965509
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155154
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176