Joint Rain Detection and Removal from a Single Image with Contextualized Deep Networks

条纹 计算机科学 能见度 人工智能 深度学习 二进制数 像素 计算机视觉 模式识别(心理学) 遥感 气象学 地质学 地理 数学 算术 矿物学
作者
Wenhan Yang,Robby T. Tan,Jiashi Feng,Ziyu Guo,Shuicheng Yan,Jiaying Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1377-1393 被引量:279
标识
DOI:10.1109/tpami.2019.2895793
摘要

Rain streaks, particularly in heavy rain, not only degrade visibility but also make many computer vision algorithms fail to function properly. In this paper, we address this visibility problem by focusing on single-image rain removal, even in the presence of dense rain streaks and rain-streak accumulation, which is visually similar to mist or fog. To achieve this, we introduce a new rain model and a deep learning architecture. Our rain model incorporates a binary rain map indicating rain-streak regions, and accommodates various shapes, directions, and sizes of overlapping rain streaks, as well as rain accumulation, to model heavy rain. Based on this model, we construct a multi-task deep network, which jointly learns three targets: the binary rain-streak map, rain streak layers, and clean background, which is our ultimate output. To generate features that can be invariant to rain steaks, we introduce a contextual dilated network, which is able to exploit regional contextual information. To handle various shapes and directions of overlapping rain streaks, our strategy is to utilize a recurrent process that progressively removes rain streaks. Our binary map provides a constraint and thus additional information to train our network. Extensive evaluation on real images, particularly in heavy rain, shows the effectiveness of our model and architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小平发布了新的文献求助10
1秒前
3秒前
可爱的香岚完成签到,获得积分10
3秒前
宁小满完成签到,获得积分10
4秒前
4秒前
隐形的山雁完成签到,获得积分10
5秒前
jijijibibibi完成签到,获得积分10
5秒前
爱科研的小吴完成签到 ,获得积分10
6秒前
hanxuepenyun发布了新的文献求助10
7秒前
8秒前
大个应助再睡亿分钟采纳,获得10
9秒前
YNC完成签到,获得积分10
9秒前
HHHHHJ完成签到,获得积分10
9秒前
9秒前
Ava应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得30
10秒前
pwy应助科研通管家采纳,获得20
10秒前
聪慧海豚应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
JaneChen发布了新的文献求助10
12秒前
14秒前
14秒前
科研通AI2S应助静心404采纳,获得10
14秒前
14秒前
威武忆山完成签到 ,获得积分10
15秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140783
求助须知:如何正确求助?哪些是违规求助? 2791678
关于积分的说明 7800053
捐赠科研通 2448055
什么是DOI,文献DOI怎么找? 1302292
科研通“疑难数据库(出版商)”最低求助积分说明 626500
版权声明 601210