Free-access copy-number variant detection tools for targeted next-generation sequencing data

桑格测序 外显子组测序 工作流程 计算机科学 DNA测序 拷贝数变化 外显子组 计算生物学 基因组学 数据科学 生物 遗传学 数据库 基因 基因组 突变
作者
Iria Roca,Lorena González-Castro,Helena Fernández,María L. Couce,Ana Fernández‐Marmiesse
出处
期刊:Mutation Research-reviews in Mutation Research [Elsevier]
卷期号:779: 114-125 被引量:51
标识
DOI:10.1016/j.mrrev.2019.02.005
摘要

Copy number variants (CNVs) are intermediate-scale structural variants containing copy number changes involving DNA fragments of between 1 kb and 5 Mb. Although known to account for a significant proportion of the genetic burden in human disease, the role of CNVs (especially small CNVs) is often underestimated, as they are undetectable by traditional Sanger sequencing. Since the development of next-generation sequencing (NGS) technologies, several research groups have compared depth of coverage (DoC) patterns between samples, an approach that may facilitate effective CNV detection. Most CNV detection tools based on DoC comparisons are designed to work with whole-genome sequencing (WGS) or whole-exome sequencing (WES) data. However, few methods developed to date are designed for custom/commercial targeted NGS (tg-NGS) panels, the assays most commonly used for diagnostic purposes. Moreover, the development and evaluation of these tools is hindered by (i) the scarcity of thoroughly annotated data containing CNVs and (ii) a dearth of simulation tools for WES and tg-NGS that mimic the errors and biases encountered in these data. Here, we review DoC-based CNV detection methods described in the current literature, assess their performance with simulated tg-NGS data, and discuss their strengths and weaknesses when integrated into the daily laboratory workflow. Our findings suggest that the best methods for CNV detection in tg-NGS panels are DECoN, ExomeDepth, and ExomeCNV. Regardless of the method used, there is a need to make these programs more user-friendly to enable their use by diagnostic laboratory staff who lack bioinformatics training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ventus完成签到,获得积分20
2秒前
pxj发布了新的文献求助30
4秒前
llt发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
JamesPei应助王宇涵采纳,获得10
8秒前
adamchris应助COPP采纳,获得10
9秒前
小美最棒完成签到,获得积分10
10秒前
zyy完成签到 ,获得积分10
10秒前
11秒前
沉默曼冬发布了新的文献求助10
12秒前
科研通AI2S应助苗条映之采纳,获得10
12秒前
llt完成签到,获得积分10
13秒前
aaronzhu1995完成签到 ,获得积分10
13秒前
烟花应助小美最棒采纳,获得10
15秒前
搜集达人应助bigbing采纳,获得10
15秒前
Blaseaka完成签到 ,获得积分10
16秒前
ding应助HY采纳,获得10
17秒前
18秒前
向日葵完成签到,获得积分10
19秒前
优雅的盼夏完成签到 ,获得积分10
20秒前
20秒前
超菜完成签到,获得积分10
22秒前
louis发布了新的文献求助10
23秒前
妮妮完成签到 ,获得积分10
25秒前
25秒前
27秒前
摆渡人完成签到,获得积分10
30秒前
ya完成签到,获得积分10
31秒前
dd完成签到,获得积分10
32秒前
HY发布了新的文献求助10
32秒前
33秒前
33秒前
高xuewen应助尛破孩采纳,获得10
34秒前
EVAN完成签到,获得积分10
35秒前
小美最棒发布了新的文献求助10
37秒前
bkagyin应助刘梦杰采纳,获得30
38秒前
大气的翠彤完成签到,获得积分10
38秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165286
求助须知:如何正确求助?哪些是违规求助? 2816322
关于积分的说明 7912245
捐赠科研通 2475959
什么是DOI,文献DOI怎么找? 1318465
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388