Classification between digs and dust particles on optical surfaces with acquisition and analysis of polarization characteristics

旋光法 光学 极化(电化学) 物理 线极化 穆勒微积分 遥感 散射 计算机科学 激光器 地质学 化学 物理化学
作者
Fan Wu,Yongying Yang,Jiabin Jiang,Pengfei Zhang,Yanwei Li,Xiao Xiang,Guo‐Hua Feng,Jian Bai,Kaiwei Wang,Qiao Xu,Hongzhen Jiang,Bo Gao
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:58 (4): 1073-1073 被引量:24
标识
DOI:10.1364/ao.58.001073
摘要

In the automatic detection for surface defects of optical components, the digs and dust particles exhibit similar features: point-like shape and variable intensity reflectivity. On this condition, these two types with entirely different damages are easily confused so that misjudgments will be induced. To solve this problem, a polarization-characteristics-based classification method of digs and dust particles (PCCDD) is proposed based on the polarimetric imaging technique and dark-field imaging technique. First, a dark-field imaging system equipped with a polarization state generator (PSG) and a polarization state analyzer (PSA) is employed to measure and establish normalized Mueller matrices' datasets of digs and dust particles. And by a nonlinear global search combined with a separability evaluation method, the optimal number of acquisitions and corresponding polarization measurement states of the PSG and the PSA are obtained, as well as the parameters of classification function. Then, multiple polarization images are acquired under the optimal states to extract a multidimensional feature description that relates only to the polarization characteristics of the defect; this subsequently acts as the input vector of the classifier to finally achieve the classification. This method takes full advantage of both the difference in polarization properties between digs and dust particles and the characteristic that the polarization properties of digs are relatively invariant while those of dust particles have a large variability. The classification process involves only simple matrix operations. Compared to the traditional discrimination method based on intensity images, the features obtained by this method have a higher separability. Experiments show that the classification accuracy reaches over 90%. This method can be further applied to the recognition and discrimination of other defects in the field of surface defects' detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwy109发布了新的文献求助10
刚刚
linmo发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
从容元菱完成签到,获得积分10
1秒前
2秒前
xixi发布了新的文献求助10
2秒前
传奇3应助李牧采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
cindy完成签到,获得积分10
4秒前
yyq发布了新的文献求助20
4秒前
wentyli完成签到,获得积分10
4秒前
4秒前
犹豫的芷容完成签到,获得积分10
4秒前
wen发布了新的文献求助10
5秒前
dy1994完成签到,获得积分10
5秒前
5秒前
7秒前
大个应助linmo采纳,获得10
7秒前
补药学习发布了新的文献求助10
7秒前
...发布了新的文献求助10
7秒前
7秒前
乐乐应助迅速的宛海采纳,获得10
8秒前
ppat5012发布了新的文献求助10
8秒前
8秒前
搜集达人应助劈里啪啦采纳,获得10
9秒前
Owen应助踏实的石头采纳,获得10
9秒前
9秒前
遇上就这样吧应助西西采纳,获得10
9秒前
量子星尘发布了新的文献求助50
10秒前
现代灵寒发布了新的文献求助10
10秒前
就吃汉堡关注了科研通微信公众号
10秒前
小土豆完成签到,获得积分10
10秒前
耍酷含芙发布了新的文献求助10
11秒前
SciGPT应助tonyfountain采纳,获得10
11秒前
syk发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835