Classification between digs and dust particles on optical surfaces with acquisition and analysis of polarization characteristics

旋光法 光学 极化(电化学) 物理 线极化 穆勒微积分 遥感 散射 计算机科学 激光器 地质学 化学 物理化学
作者
Fan Wu,Yongying Yang,Jiabin Jiang,Pengfei Zhang,Yanwei Li,Xiao Xiang,Guo‐Hua Feng,Jian Bai,Kaiwei Wang,Qiao Xu,Hongzhen Jiang,Bo Gao
出处
期刊:Applied Optics [The Optical Society]
卷期号:58 (4): 1073-1073 被引量:27
标识
DOI:10.1364/ao.58.001073
摘要

In the automatic detection for surface defects of optical components, the digs and dust particles exhibit similar features: point-like shape and variable intensity reflectivity. On this condition, these two types with entirely different damages are easily confused so that misjudgments will be induced. To solve this problem, a polarization-characteristics-based classification method of digs and dust particles (PCCDD) is proposed based on the polarimetric imaging technique and dark-field imaging technique. First, a dark-field imaging system equipped with a polarization state generator (PSG) and a polarization state analyzer (PSA) is employed to measure and establish normalized Mueller matrices' datasets of digs and dust particles. And by a nonlinear global search combined with a separability evaluation method, the optimal number of acquisitions and corresponding polarization measurement states of the PSG and the PSA are obtained, as well as the parameters of classification function. Then, multiple polarization images are acquired under the optimal states to extract a multidimensional feature description that relates only to the polarization characteristics of the defect; this subsequently acts as the input vector of the classifier to finally achieve the classification. This method takes full advantage of both the difference in polarization properties between digs and dust particles and the characteristic that the polarization properties of digs are relatively invariant while those of dust particles have a large variability. The classification process involves only simple matrix operations. Compared to the traditional discrimination method based on intensity images, the features obtained by this method have a higher separability. Experiments show that the classification accuracy reaches over 90%. This method can be further applied to the recognition and discrimination of other defects in the field of surface defects' detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助underway采纳,获得10
1秒前
1秒前
一咦已艺完成签到 ,获得积分10
1秒前
1秒前
甲乙丙丁发布了新的文献求助10
2秒前
2秒前
3秒前
小马甲应助Janmy采纳,获得10
3秒前
3秒前
东日完成签到,获得积分10
3秒前
甘草完成签到,获得积分10
4秒前
howar完成签到,获得积分10
4秒前
tanghong发布了新的文献求助20
5秒前
5秒前
蟹黄的店完成签到,获得积分10
5秒前
社牛小柯发布了新的文献求助10
5秒前
xxguge完成签到 ,获得积分10
6秒前
xjs发布了新的文献求助10
6秒前
浮游应助鱼摆摆摆摆采纳,获得10
6秒前
irvinzp发布了新的文献求助10
7秒前
英姑应助顺心凡采纳,获得10
7秒前
李爱国应助甲乙丙丁采纳,获得10
7秒前
吴晨曦发布了新的文献求助10
7秒前
香蕉觅云应助啊啊啊采纳,获得10
7秒前
Criminology34应助guigui采纳,获得10
8秒前
结实芷波应助guigui采纳,获得10
8秒前
积极的尔竹完成签到,获得积分10
8秒前
BINGBING1230发布了新的文献求助10
8秒前
9秒前
han发布了新的文献求助10
10秒前
Monster完成签到,获得积分10
10秒前
Zhou完成签到,获得积分20
11秒前
汉堡包应助Tonald Yang采纳,获得10
12秒前
传奇3应助xjs采纳,获得10
12秒前
残剑月发布了新的文献求助10
12秒前
12秒前
友好的芒果完成签到,获得积分10
13秒前
今后应助现代宛丝采纳,获得10
13秒前
xtt发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728