Classification between digs and dust particles on optical surfaces with acquisition and analysis of polarization characteristics

旋光法 光学 极化(电化学) 物理 线极化 穆勒微积分 遥感 散射 计算机科学 激光器 地质学 化学 物理化学
作者
Fan Wu,Yongying Yang,Jiabin Jiang,Pengfei Zhang,Yanwei Li,Xiao Xiang,Guo‐Hua Feng,Jian Bai,Kaiwei Wang,Qiao Xu,Hongzhen Jiang,Bo Gao
出处
期刊:Applied Optics [The Optical Society]
卷期号:58 (4): 1073-1073 被引量:27
标识
DOI:10.1364/ao.58.001073
摘要

In the automatic detection for surface defects of optical components, the digs and dust particles exhibit similar features: point-like shape and variable intensity reflectivity. On this condition, these two types with entirely different damages are easily confused so that misjudgments will be induced. To solve this problem, a polarization-characteristics-based classification method of digs and dust particles (PCCDD) is proposed based on the polarimetric imaging technique and dark-field imaging technique. First, a dark-field imaging system equipped with a polarization state generator (PSG) and a polarization state analyzer (PSA) is employed to measure and establish normalized Mueller matrices' datasets of digs and dust particles. And by a nonlinear global search combined with a separability evaluation method, the optimal number of acquisitions and corresponding polarization measurement states of the PSG and the PSA are obtained, as well as the parameters of classification function. Then, multiple polarization images are acquired under the optimal states to extract a multidimensional feature description that relates only to the polarization characteristics of the defect; this subsequently acts as the input vector of the classifier to finally achieve the classification. This method takes full advantage of both the difference in polarization properties between digs and dust particles and the characteristic that the polarization properties of digs are relatively invariant while those of dust particles have a large variability. The classification process involves only simple matrix operations. Compared to the traditional discrimination method based on intensity images, the features obtained by this method have a higher separability. Experiments show that the classification accuracy reaches over 90%. This method can be further applied to the recognition and discrimination of other defects in the field of surface defects' detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小丸子发布了新的文献求助10
刚刚
QYSF222发布了新的文献求助10
1秒前
1秒前
pterionGao完成签到 ,获得积分10
3秒前
田様应助wuhu采纳,获得10
4秒前
Lucas应助euphoria采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
杨立胜发布了新的文献求助10
7秒前
李茉琳发布了新的文献求助10
8秒前
9秒前
edddyor发布了新的文献求助20
9秒前
英俊的铭应助努力哦采纳,获得30
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
adou完成签到 ,获得积分10
14秒前
华仔应助qqqqqq采纳,获得10
14秒前
奶桃七七发布了新的文献求助10
14秒前
荞麦完成签到,获得积分10
15秒前
16秒前
领导范儿应助LL采纳,获得10
16秒前
芳芳子呀发布了新的文献求助10
16秒前
mm完成签到 ,获得积分10
17秒前
19秒前
Jasper应助CXY采纳,获得10
19秒前
冉冉完成签到,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
坦率的金针菇完成签到 ,获得积分10
20秒前
ARNAMO发布了新的文献求助10
23秒前
23秒前
24秒前
刘冠廷发布了新的文献求助30
24秒前
科研混子完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
Able阿拉基完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
子木发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785302
求助须知:如何正确求助?哪些是违规求助? 5687230
关于积分的说明 15467275
捐赠科研通 4914416
什么是DOI,文献DOI怎么找? 2645196
邀请新用户注册赠送积分活动 1593006
关于科研通互助平台的介绍 1547351