亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification between digs and dust particles on optical surfaces with acquisition and analysis of polarization characteristics

旋光法 光学 极化(电化学) 物理 线极化 穆勒微积分 遥感 散射 计算机科学 激光器 地质学 化学 物理化学
作者
Fan Wu,Yongying Yang,Jiabin Jiang,Pengfei Zhang,Yanwei Li,Xiao Xiang,Guo‐Hua Feng,Jian Bai,Kaiwei Wang,Qiao Xu,Hongzhen Jiang,Bo Gao
出处
期刊:Applied Optics [The Optical Society]
卷期号:58 (4): 1073-1073 被引量:27
标识
DOI:10.1364/ao.58.001073
摘要

In the automatic detection for surface defects of optical components, the digs and dust particles exhibit similar features: point-like shape and variable intensity reflectivity. On this condition, these two types with entirely different damages are easily confused so that misjudgments will be induced. To solve this problem, a polarization-characteristics-based classification method of digs and dust particles (PCCDD) is proposed based on the polarimetric imaging technique and dark-field imaging technique. First, a dark-field imaging system equipped with a polarization state generator (PSG) and a polarization state analyzer (PSA) is employed to measure and establish normalized Mueller matrices' datasets of digs and dust particles. And by a nonlinear global search combined with a separability evaluation method, the optimal number of acquisitions and corresponding polarization measurement states of the PSG and the PSA are obtained, as well as the parameters of classification function. Then, multiple polarization images are acquired under the optimal states to extract a multidimensional feature description that relates only to the polarization characteristics of the defect; this subsequently acts as the input vector of the classifier to finally achieve the classification. This method takes full advantage of both the difference in polarization properties between digs and dust particles and the characteristic that the polarization properties of digs are relatively invariant while those of dust particles have a large variability. The classification process involves only simple matrix operations. Compared to the traditional discrimination method based on intensity images, the features obtained by this method have a higher separability. Experiments show that the classification accuracy reaches over 90%. This method can be further applied to the recognition and discrimination of other defects in the field of surface defects' detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
ceeray23发布了新的文献求助20
12秒前
无韶的月亮树完成签到 ,获得积分10
12秒前
852应助林迁采纳,获得10
17秒前
34秒前
Cmqq发布了新的文献求助10
37秒前
TwentyNine完成签到,获得积分10
44秒前
50秒前
李健的小迷弟应助Cmqq采纳,获得10
51秒前
bai完成签到 ,获得积分10
53秒前
ceeray23发布了新的文献求助20
55秒前
SciGPT应助科研通管家采纳,获得10
57秒前
无花果应助科研通管家采纳,获得10
57秒前
BowieHuang应助科研通管家采纳,获得10
57秒前
BowieHuang应助科研通管家采纳,获得10
57秒前
BowieHuang应助科研通管家采纳,获得10
58秒前
1分钟前
1分钟前
林迁发布了新的文献求助10
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
起风了完成签到 ,获得积分10
1分钟前
billevans完成签到,获得积分10
2分钟前
传奇3应助薄荷采纳,获得10
2分钟前
Cmqq发布了新的文献求助10
2分钟前
jjjj完成签到,获得积分10
2分钟前
孔踏歌完成签到,获得积分10
2分钟前
水木子尔完成签到,获得积分10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
Hayat应助ceeray23采纳,获得20
2分钟前
3分钟前
Criminology34应助ceeray23采纳,获得20
3分钟前
蕴蝶发布了新的文献求助10
3分钟前
一川完成签到,获得积分10
3分钟前
蕴蝶完成签到,获得积分10
3分钟前
3分钟前
小江发布了新的文献求助10
3分钟前
3分钟前
优秀沛春完成签到,获得积分10
3分钟前
乐乐应助OnlyHarbour采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904