Classification between digs and dust particles on optical surfaces with acquisition and analysis of polarization characteristics

旋光法 光学 极化(电化学) 物理 线极化 穆勒微积分 遥感 散射 计算机科学 激光器 地质学 化学 物理化学
作者
Fan Wu,Yongying Yang,Jiabin Jiang,Pengfei Zhang,Yanwei Li,Xiao Xiang,Guo‐Hua Feng,Jian Bai,Kaiwei Wang,Qiao Xu,Hongzhen Jiang,Bo Gao
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:58 (4): 1073-1073 被引量:27
标识
DOI:10.1364/ao.58.001073
摘要

In the automatic detection for surface defects of optical components, the digs and dust particles exhibit similar features: point-like shape and variable intensity reflectivity. On this condition, these two types with entirely different damages are easily confused so that misjudgments will be induced. To solve this problem, a polarization-characteristics-based classification method of digs and dust particles (PCCDD) is proposed based on the polarimetric imaging technique and dark-field imaging technique. First, a dark-field imaging system equipped with a polarization state generator (PSG) and a polarization state analyzer (PSA) is employed to measure and establish normalized Mueller matrices' datasets of digs and dust particles. And by a nonlinear global search combined with a separability evaluation method, the optimal number of acquisitions and corresponding polarization measurement states of the PSG and the PSA are obtained, as well as the parameters of classification function. Then, multiple polarization images are acquired under the optimal states to extract a multidimensional feature description that relates only to the polarization characteristics of the defect; this subsequently acts as the input vector of the classifier to finally achieve the classification. This method takes full advantage of both the difference in polarization properties between digs and dust particles and the characteristic that the polarization properties of digs are relatively invariant while those of dust particles have a large variability. The classification process involves only simple matrix operations. Compared to the traditional discrimination method based on intensity images, the features obtained by this method have a higher separability. Experiments show that the classification accuracy reaches over 90%. This method can be further applied to the recognition and discrimination of other defects in the field of surface defects' detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
目土土发布了新的文献求助10
刚刚
思源应助蒸制采纳,获得10
刚刚
zs完成签到,获得积分10
刚刚
西部牛仔发布了新的文献求助10
刚刚
jun发布了新的文献求助10
刚刚
栖木完成签到,获得积分10
1秒前
Akim应助Steve采纳,获得10
2秒前
充电宝应助西瓜采纳,获得10
2秒前
3秒前
yoyo发布了新的文献求助10
3秒前
4秒前
一朵约尔发布了新的文献求助10
4秒前
李健应助无限小松鼠采纳,获得10
5秒前
浮游应助悲凉的小馒头采纳,获得10
5秒前
5秒前
浑灵安完成签到 ,获得积分10
5秒前
小烦同学完成签到,获得积分10
6秒前
6秒前
上官若男应助辛勤秋双采纳,获得10
6秒前
Yasmine完成签到 ,获得积分10
7秒前
苒柒完成签到,获得积分10
7秒前
沈雨琦完成签到,获得积分20
7秒前
8秒前
儒雅的傲芙完成签到,获得积分10
8秒前
Ico发布了新的文献求助20
8秒前
科研通AI5应助Yue采纳,获得10
9秒前
顺利的觅云完成签到,获得积分10
9秒前
浮游应助冷酷愚志采纳,获得10
9秒前
10秒前
Orange完成签到,获得积分20
10秒前
目土土完成签到,获得积分10
10秒前
11秒前
11秒前
朱梦晨发布了新的文献求助10
11秒前
隐形曼青应助LJR采纳,获得10
12秒前
Leah完成签到,获得积分10
12秒前
12秒前
星弟完成签到 ,获得积分10
12秒前
jun完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192122
求助须知:如何正确求助?哪些是违规求助? 4375170
关于积分的说明 13623898
捐赠科研通 4229344
什么是DOI,文献DOI怎么找? 2319853
邀请新用户注册赠送积分活动 1318385
关于科研通互助平台的介绍 1268536