Classification between digs and dust particles on optical surfaces with acquisition and analysis of polarization characteristics

旋光法 光学 极化(电化学) 物理 线极化 穆勒微积分 遥感 散射 计算机科学 激光器 地质学 化学 物理化学
作者
Fan Wu,Yongying Yang,Jiabin Jiang,Pengfei Zhang,Yanwei Li,Xiao Xiang,Guo‐Hua Feng,Jian Bai,Kaiwei Wang,Qiao Xu,Hongzhen Jiang,Bo Gao
出处
期刊:Applied Optics [The Optical Society]
卷期号:58 (4): 1073-1073 被引量:27
标识
DOI:10.1364/ao.58.001073
摘要

In the automatic detection for surface defects of optical components, the digs and dust particles exhibit similar features: point-like shape and variable intensity reflectivity. On this condition, these two types with entirely different damages are easily confused so that misjudgments will be induced. To solve this problem, a polarization-characteristics-based classification method of digs and dust particles (PCCDD) is proposed based on the polarimetric imaging technique and dark-field imaging technique. First, a dark-field imaging system equipped with a polarization state generator (PSG) and a polarization state analyzer (PSA) is employed to measure and establish normalized Mueller matrices' datasets of digs and dust particles. And by a nonlinear global search combined with a separability evaluation method, the optimal number of acquisitions and corresponding polarization measurement states of the PSG and the PSA are obtained, as well as the parameters of classification function. Then, multiple polarization images are acquired under the optimal states to extract a multidimensional feature description that relates only to the polarization characteristics of the defect; this subsequently acts as the input vector of the classifier to finally achieve the classification. This method takes full advantage of both the difference in polarization properties between digs and dust particles and the characteristic that the polarization properties of digs are relatively invariant while those of dust particles have a large variability. The classification process involves only simple matrix operations. Compared to the traditional discrimination method based on intensity images, the features obtained by this method have a higher separability. Experiments show that the classification accuracy reaches over 90%. This method can be further applied to the recognition and discrimination of other defects in the field of surface defects' detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽逸完成签到,获得积分10
刚刚
Szw666完成签到,获得积分10
5秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
jojo完成签到 ,获得积分10
7秒前
8秒前
lll完成签到,获得积分20
8秒前
VAN发布了新的文献求助10
11秒前
徐小美完成签到,获得积分20
12秒前
传奇3应助lll采纳,获得30
12秒前
老仙翁完成签到,获得积分10
12秒前
lilyz615完成签到,获得积分10
14秒前
15秒前
ding应助听见采纳,获得10
17秒前
17秒前
18秒前
斯文败类应助kuny采纳,获得10
18秒前
77发布了新的文献求助10
19秒前
aniver完成签到 ,获得积分10
20秒前
21秒前
痕丶歆完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
JY完成签到,获得积分10
23秒前
酷波er应助77采纳,获得10
23秒前
开朗啤酒完成签到,获得积分10
24秒前
独特的缘分完成签到,获得积分10
25秒前
震动的听安完成签到,获得积分10
26秒前
调皮语雪完成签到 ,获得积分10
28秒前
大力向南完成签到,获得积分10
28秒前
所所应助xbw采纳,获得10
30秒前
30秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
33秒前
Ooo完成签到 ,获得积分10
34秒前
Liangstar完成签到 ,获得积分10
34秒前
小蘑菇应助清脆南霜采纳,获得10
35秒前
小蘑菇应助QinQin采纳,获得10
36秒前
Lucas应助鲨鱼游泳教练采纳,获得10
36秒前
bunny发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978