齐次空间
爱因斯坦
矩阵相似性
领域(数学)
李代数
转化(遗传学)
数学
爱因斯坦场方程
李群
数学物理
功能(生物学)
物理
点(几何)
爱因斯坦常数
数学分析
纯数学
偏微分方程
几何学
生物化学
进化生物学
生物
基因
化学
作者
Lakhveer Kaur,Abdul‐Majid Wazwaz
标识
DOI:10.1080/17455030.2019.1574410
摘要
The current study deals with investigation of Einstein's vacuum field equation for exploring movable critical points. We employ first the Painlevé analysis, and then we use the auto-Bäcklund transformation. Moreover, the Lie classical method will be implemented to obtain similarity reductions and exact solutions via discovering the entire sets of point symmetries. We show that symmetries of Einstein's vacuum field equation form an infinite-dimensional Lie algebra and arbitrary function f(t) in acquired solutions. In addition, various other arbitrary parameters provide enough freedom to simulate physical situations governed by this equation are observed.
科研通智能强力驱动
Strongly Powered by AbleSci AI