黑体辐射
发射率
热辐射
材料科学
红外线的
热的
大气温度范围
热光电伏打
相变
亚稳态
光电子学
凝聚态物理
光学
物理
热力学
辐射
量子力学
共发射极
作者
Alireza Shahsafi,Patrick Roney,You Zhou,Zhen Zhang,Yuzhe Xiao,Chenghao Wan,Raymond Wambold,Jad Salman,Zhaoning Yu,Jiarui Li,Jerzy Sadowski,Riccardo Comin,Shriram Ramanathan,Mikhail A. Kats
标识
DOI:10.1073/pnas.1911244116
摘要
Thermal emission is the process by which all objects at nonzero temperatures emit light and is well described by the Planck, Kirchhoff, and Stefan-Boltzmann laws. For most solids, the thermally emitted power increases monotonically with temperature in a one-to-one relationship that enables applications such as infrared imaging and noncontact thermometry. Here, we demonstrated ultrathin thermal emitters that violate this one-to-one relationship via the use of samarium nickel oxide (SmNiO3), a strongly correlated quantum material that undergoes a fully reversible, temperature-driven solid-state phase transition. The smooth and hysteresis-free nature of this unique insulator-to-metal phase transition enabled us to engineer the temperature dependence of emissivity to precisely cancel out the intrinsic blackbody profile described by the Stefan-Boltzmann law, for both heating and cooling. Our design results in temperature-independent thermally emitted power within the long-wave atmospheric transparency window (wavelengths of 8 to 14 µm), across a broad temperature range of ∼30 °C, centered around ∼120 °C. The ability to decouple temperature and thermal emission opens a gateway for controlling the visibility of objects to infrared cameras and, more broadly, opportunities for quantum materials in controlling heat transfer.
科研通智能强力驱动
Strongly Powered by AbleSci AI