清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mutation of the CD28 Costimulatory Domain Confers Decreased CAR T Cell Exhaustion

CD28 嵌合抗原受体 T细胞 共刺激 免疫学 生物 癌症研究 免疫系统 细胞生物学
作者
Justin C. Boucher,Gongbo Li,Bishwas Shrestha,Maria L. Cabral,Dylan Morrissey,Lawrence Guan,Marco L. Davila
出处
期刊:Blood [Elsevier BV]
卷期号:132 (Supplement 1): 966-966 被引量:4
标识
DOI:10.1182/blood-2018-99-110645
摘要

The therapeutic promise of chimeric antigen receptor (CAR) T cells was realized when complete remission rates of 90% were reported after treating B cell acute lymphoblastic leukemia (B-ALL) with CD19-targeted CAR T cells. However, a major obstacle with continued clinical development of CAR T cells is the limited understanding of CAR T cell biology and its mechanisms of immunity. We and others have shown that CARs with a CD28 co-stimulatory domain drive high levels of T cell activation causing acute toxicities, but also lead to T cell exhaustion and shortened persistence. The CD28 domain includes 3 intracellular subdomains (YMNM, PRRP, and PYAP) that regulate signaling pathways post TCR-stimulation, but it is unknown how they modulate activation and/or exhaustion of CAR T cells. A detailed understanding of the mechanism of CD28-dependent exhaustion in CAR T cells will allow the design of a CAR less prone to exhaustion and reduce relapse rates. We hypothesized that by incorporating null mutations of the CD28 subdomains (YMNM, PRRP, or PYAP) we could optimize CAR T cell signaling and reduce exhaustion. In vitro, we found mutated CAR T cells with only a functional PYAP (mut06) subdomain secrete significantly less IFNγ (Fig1A), IL6, and TNFα after 24hr stimulation compared to non-mutated CD28 CAR T cells, but greater than the 1st generation m19z CAR. Also, cytoxicity was enhanced with the PYAP only CAR T cells compared to non-mutated CARs (Fig1B). When we examined the PYAP (mut06) only mutant in an immune competent mouse model we found similar B cell aplasia and CAR T cell persistence compared to non-mutated CD28 CAR T cells. Additionally, PYAP only CAR T cells injected into mice had decreased (82% to 62%) expression of PD1 in the BM. Using a pre-clinical immunocompetent mouse tumor model we found the PYAP only CAR T cell treated mice had a significant survival advantage compared to non-mutated CD28 CAR T cells, with 100% survival of mice given PAYP only CAR T cells compared to 50% survival of mice given non-mutated CAR T cells (Fig1C). We next sought to determine what role CAR T cell exhaustion was playing using a Rag knockout mouse system. CAR T cells were given to Rag-/- mice and 1 week later mice were challenged with tumor. Studies in Rag-/- mice also showed PYAP only CAR T cells were increased 35% in the BM and 92% in the spleen compared to non-mutated CD28 CAR T cells. We also found PYAP only CAR T cells had significantly less expression of PD1 compared to non-mutated CAR T cells (Fig1D). We then co-cultured CAR T cells with target cells expressing CD19 and PDL1 and found PYAP only CAR T cells had increased IFNγ (42%), TNFα (62%) and IL2 (73%) secretion compared to exhausted non-mutated CD28 CAR T cells. This shows that PYAP only CAR T cells are more resistant to exhaustion. To find a mechanistic explanation for this observation we examined CAR T cell signaling. Using Nur77, pAkt, and pmTOR to measure CAR signaling we found PYAP only CAR T cells had significantly reduced levels of Nur77 while still having higher expression then first generation CAR T cells. We then examined what affect the PYAP only CAR had on transcription factors. We found similar AP1 and NF-kB expression between PYAP only and non-mutated CD28 CAR T cells but a significant reduction of NFAT in the PYAP only mutants compared to non-mutated CD28 CAR T cells. This suggests reduced NFAT expression contributes to the PYAP only CAR9s resistance to exhaustion. Finally, we made human CAR constructs of the PYAP only mutant. We found PYAP only human CAR T cells had increased cytoxicity and decreased exhaustion in vitro compared to non-mutated human CD28 CAR T cells. NFAT levels in human PYAP only CAR T cells were significantly reduced compared to non-mutated CAR T cells supporting our findings in mice. Our results demonstrate that CAR T cells with only a PYAP CD28 subdomain have better cytoxicity and decreased exhaustion compared to non-mutated CD28 CAR T cells. Our results suggest this is the result of decreased CAR and NFAT signaling. Additionally, we were able to validate these findings using human CAR constructs. This work allows for development of an enhanced 2nd and 3rd generation CAR T cell therapies for B cell malignancies by optimizing CAR T cell activation and persistence which may reduce relapse rates and severe toxicities. Disclosures Davila:Celyad: Consultancy, Membership on an entity9s Board of Directors or advisory committees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷傲半邪完成签到,获得积分10
6秒前
司空天德发布了新的文献求助10
11秒前
shirley完成签到,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
蒲蒲完成签到 ,获得积分10
14秒前
壮观的谷冬完成签到 ,获得积分0
20秒前
松鼠非鼠完成签到 ,获得积分10
21秒前
六一完成签到 ,获得积分10
22秒前
紫熊发布了新的文献求助10
41秒前
42秒前
47秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
酷酷一笑发布了新的文献求助10
1分钟前
紫熊发布了新的文献求助10
1分钟前
1分钟前
cx应助搞怪莫茗采纳,获得10
1分钟前
1分钟前
紫熊发布了新的文献求助10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
elisa828完成签到,获得积分10
2分钟前
紫熊发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
lod完成签到,获得积分10
3分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
3分钟前
紫熊发布了新的文献求助10
3分钟前
Liufgui应助水天一色采纳,获得10
3分钟前
fang完成签到,获得积分10
3分钟前
3分钟前
3分钟前
xiaozou55完成签到 ,获得积分10
3分钟前
紫熊发布了新的文献求助20
4分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015340
求助须知:如何正确求助?哪些是违规求助? 3555298
关于积分的说明 11317940
捐赠科研通 3288605
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983