Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation

化学 门控 分子动力学 离子 离子通道 钠通道 药物发现 电压门控离子通道 纳米技术 功能(生物学) 化学物理 生物物理学 生物系统 计算化学 材料科学 生物 受体 进化生物学 有机化学 生物化学
作者
E. A. Flood,Céline Boiteux,Bogdan Lev,Igor Vorobyov,Toby W. Allen
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:119 (13): 7737-7832 被引量:104
标识
DOI:10.1021/acs.chemrev.8b00630
摘要

Membrane ion channels are the fundamental electrical components in the nervous system. Recent developments in X-ray crystallography and cryo-EM microscopy have revealed what these proteins look like in atomic detail but do not tell us how they function. Molecular dynamics simulations have progressed to the point that we can now simulate realistic molecular assemblies to produce quantitative calculations of the thermodynamic and kinetic quantities that control function. In this review, we summarize the state of atomistic simulation methods for ion channels to understand their conduction, activation, and drug modulation mechanisms. We are at a crossroads in atomistic simulation, where long time scale observation can provide unbiased exploration of mechanisms, supplemented by biased free energy methodologies. We illustrate the use of these approaches to describe ion conduction and selectivity in voltage-gated sodium and acid-sensing ion channels. Studies of channel gating present a significant challenge, as activation occurs on longer time scales. Enhanced sampling approaches can ensure convergence on minimum free energy pathways for activation, as illustrated here for pentameric ligand-gated ion channels that are principal to nervous system function and the actions of general anesthetics. We also examine recent studies of local anesthetic and antiepileptic drug binding to a sodium channel, revealing sites and pathways that may offer new targets for drug development. Modern simulations thus offer a range of molecular-level insights into ion channel function and modulation as a learning platform for mechanistic discovery and drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
府中园马发布了新的文献求助10
1秒前
Duffy完成签到,获得积分10
2秒前
小青椒应助fangzhi采纳,获得60
2秒前
price发布了新的文献求助10
2秒前
3秒前
5秒前
MeSs完成签到,获得积分10
5秒前
5秒前
思柔完成签到,获得积分10
5秒前
gorgeous发布了新的文献求助30
6秒前
6秒前
英姑应助MM采纳,获得20
7秒前
8秒前
Andyfragrance完成签到,获得积分10
8秒前
科研通AI6应助simey采纳,获得10
8秒前
8秒前
善学以致用应助府中园马采纳,获得10
8秒前
white给white的求助进行了留言
8秒前
xuedan发布了新的文献求助10
9秒前
背英语发布了新的文献求助10
9秒前
玩命的靖仇完成签到,获得积分10
9秒前
9秒前
科研通AI6应助Zhusy采纳,获得10
10秒前
思源应助Zhusy采纳,获得10
10秒前
机灵的波比应助affff采纳,获得10
10秒前
tombo100发布了新的文献求助50
10秒前
10秒前
碧蓝的安露完成签到 ,获得积分10
11秒前
Ava应助bluesky采纳,获得10
11秒前
11秒前
充电宝应助割牙龈肉采纳,获得10
12秒前
12秒前
12秒前
13秒前
彩色亿先发布了新的文献求助10
14秒前
田様应助anwen采纳,获得10
14秒前
领导范儿应助kk采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336