Multi-task learning for object keypoints detection and classification

计算机科学 任务(项目管理) 对象(语法) 人工智能 集合(抽象数据类型) 目标检测 机器学习 航程(航空) 结转(投资) 视觉对象识别的认知神经科学 空格(标点符号) 模式识别(心理学) 操作系统 复合材料 经济 管理 材料科学 程序设计语言 财务
作者
Jie Xu,Lin Zhao,Shanshan Zhang,Chen Gong,Jian Yang
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:130: 182-188 被引量:3
标识
DOI:10.1016/j.patrec.2018.08.013
摘要

Object keypoints detection and classification are both central research topics in computer vision. Due to their wide range potential applications in the real world, substantial efforts have been taken to advance their performance. However, these two related tasks are mainly treated separately in previous works. We argue that keypoints detection and classification can be complementary tasks and beneficial to each other. Knowing the category of a object is able to reduce the searching space of keypoints detection models and facilitate more precise localization. On the other hand, having the knowledge of object keypoints can make classification models pay more attention on areas that are more associated with the object, which will inevitably promote classification accuracy. Embracing this observation, we propose to model keypoints detection and classification in a multi-task learning framework. Specifically, a multi-task deep network is designed and trained to conduct both tasks, where we devise the model structure delicately to carry out sufficient training of both tasks. Extensive experiments are set up on the AIFASHION DATASET and Human3.6M DATASET to validate our proposal, we show that our algorithm outperforms separate models trained individually on each task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
福路发布了新的文献求助10
刚刚
刚刚
xxf发布了新的文献求助10
1秒前
1秒前
1秒前
冲冲冲冲完成签到,获得积分10
1秒前
2秒前
小马甲应助临床耶耶采纳,获得10
2秒前
cacaca发布了新的文献求助30
3秒前
sy发布了新的文献求助10
3秒前
CipherSage应助任性行天采纳,获得10
6秒前
我是老大应助红日未央采纳,获得10
7秒前
饶渔发布了新的文献求助10
8秒前
wang1发布了新的文献求助10
8秒前
诚心访琴发布了新的文献求助30
9秒前
脑洞疼应助ling采纳,获得10
10秒前
12秒前
今后应助SUKAAAA采纳,获得10
13秒前
13秒前
yangsi完成签到,获得积分10
13秒前
13秒前
14秒前
Xxjj完成签到,获得积分10
15秒前
6666完成签到,获得积分10
16秒前
16秒前
17秒前
科研通AI6应助yumiao采纳,获得10
17秒前
18秒前
18秒前
cacaca完成签到,获得积分10
19秒前
Mikey_Teng发布了新的文献求助10
19秒前
风清扬发布了新的文献求助30
19秒前
JamesPei应助葛利斯581G采纳,获得10
20秒前
小马甲应助Joshua采纳,获得10
20秒前
20秒前
MaskRuin完成签到,获得积分10
21秒前
lance发布了新的文献求助10
21秒前
kun完成签到 ,获得积分10
22秒前
22秒前
xxfsx发布了新的文献求助10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133034
求助须知:如何正确求助?哪些是违规求助? 4334358
关于积分的说明 13503569
捐赠科研通 4171281
什么是DOI,文献DOI怎么找? 2287061
邀请新用户注册赠送积分活动 1287947
关于科研通互助平台的介绍 1228783