计算机化自适应测验
选择(遗传算法)
机器学习
计算机科学
人工智能
适应性学习
统计
数学
心理测量学
作者
Theodorus Johannes Hendrikus Maria Eggen
标识
DOI:10.3990/3.9789036533744.ch2
摘要
Item selection methods traditionally developed for computerized adaptive testing (CAT) are explored for their usefulness in item-based computerized adaptive learning (CAL) systems. While in CAT Fisher information-based selection is optimal, for recovering learning populations in CAL systems item selection based on Kullback-Leibner information is an alternative
科研通智能强力驱动
Strongly Powered by AbleSci AI