A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop

流水车间调度 计算机科学 拖延 能源消耗 渡线 编码(社会科学) 调度(生产过程) 作业车间调度 数学优化 算法 地铁列车时刻表 人工智能 数学 操作系统 统计 生物 生态学
作者
Deming Lei,Liang Gao,You-Lian Zheng
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:65 (2): 330-340 被引量:135
标识
DOI:10.1109/tem.2017.2774281
摘要

Hybrid flow shop scheduling problem (HFSP) has been extensively discussed and the main objectives are related to completion time. The reduction of energy consumption should be considered fully in HFSP in the era of green manufacturing. In this study, biobjective energy-efficient HFSP is considered, which is made up of three subproblems including scheduling, machine assignment, and speed selection. A three-string coding method is used to indicate solutions of three subproblems. A new teachers' teaching-learning-based optimization (TTLBO) is proposed to minimize total energy consumption and total tardiness. Total tardiness is regarded as a key objective and a lexicographical method is adopted to compare solutions. TTLBO generates new solutions using a new optimization mechanism and is made up of the self-learning, interactive learning, and teaching of teachers. The learning phase of students are deleted from the algorithm. Multiple neighborhood searches are used to implement the self-learning of teachers and global search based on crossover is chosen to imitate other tivities of teachers. A number of experiments are conducted to test the impact of the new optimization meachanism on the performance of TTLBO and compare TTLBO with other algorithms from the literature. The computational results show that TTLBO is a competitive algorithm for the considered HFSP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZT发布了新的文献求助10
刚刚
小蘑菇应助从容的小霸王采纳,获得10
1秒前
mao完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
无花果应助车车采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
ze完成签到,获得积分10
7秒前
cavi完成签到,获得积分10
7秒前
7秒前
白潇潇发布了新的文献求助30
7秒前
michael发布了新的文献求助10
7秒前
韦别完成签到,获得积分10
7秒前
8秒前
9秒前
合适小刺猬完成签到,获得积分10
9秒前
yuanfen发布了新的文献求助30
9秒前
9秒前
leiyuekai发布了新的文献求助10
11秒前
万能图书馆应助韦别采纳,获得10
11秒前
余泽谦发布了新的文献求助20
12秒前
清爽指甲油完成签到,获得积分10
12秒前
12秒前
求助人员发布了新的文献求助10
12秒前
猫南北发布了新的文献求助30
12秒前
Narcisa发布了新的文献求助10
13秒前
ex_ritian完成签到,获得积分10
14秒前
imchenyin完成签到,获得积分0
14秒前
14秒前
科研通AI6.1应助木木采纳,获得50
15秒前
小彭陪小崔读个研完成签到 ,获得积分10
15秒前
星辰发布了新的文献求助10
15秒前
小研家完成签到 ,获得积分10
16秒前
小旭vip发布了新的文献求助10
16秒前
我行我素完成签到 ,获得积分10
17秒前
18秒前
美丽的芙完成签到 ,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758607
求助须知:如何正确求助?哪些是违规求助? 5516616
关于积分的说明 15391531
捐赠科研通 4895924
什么是DOI,文献DOI怎么找? 2633383
邀请新用户注册赠送积分活动 1581501
关于科研通互助平台的介绍 1537138