亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop

流水车间调度 计算机科学 拖延 能源消耗 渡线 编码(社会科学) 调度(生产过程) 作业车间调度 数学优化 算法 地铁列车时刻表 人工智能 数学 操作系统 统计 生物 生态学
作者
Deming Lei,Liang Gao,You-Lian Zheng
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:65 (2): 330-340 被引量:135
标识
DOI:10.1109/tem.2017.2774281
摘要

Hybrid flow shop scheduling problem (HFSP) has been extensively discussed and the main objectives are related to completion time. The reduction of energy consumption should be considered fully in HFSP in the era of green manufacturing. In this study, biobjective energy-efficient HFSP is considered, which is made up of three subproblems including scheduling, machine assignment, and speed selection. A three-string coding method is used to indicate solutions of three subproblems. A new teachers' teaching-learning-based optimization (TTLBO) is proposed to minimize total energy consumption and total tardiness. Total tardiness is regarded as a key objective and a lexicographical method is adopted to compare solutions. TTLBO generates new solutions using a new optimization mechanism and is made up of the self-learning, interactive learning, and teaching of teachers. The learning phase of students are deleted from the algorithm. Multiple neighborhood searches are used to implement the self-learning of teachers and global search based on crossover is chosen to imitate other tivities of teachers. A number of experiments are conducted to test the impact of the new optimization meachanism on the performance of TTLBO and compare TTLBO with other algorithms from the literature. The computational results show that TTLBO is a competitive algorithm for the considered HFSP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助邓润杰采纳,获得10
3秒前
11秒前
科研通AI6应助邓润杰采纳,获得10
14秒前
FashionBoy应助傻傻的修洁采纳,获得10
16秒前
情怀应助Radiance采纳,获得10
20秒前
wangxw完成签到,获得积分10
21秒前
23秒前
科研通AI2S应助傻傻的修洁采纳,获得10
23秒前
1033524682发布了新的文献求助30
27秒前
27秒前
neao完成签到 ,获得积分10
30秒前
Lucas应助邓润杰采纳,获得10
31秒前
Radiance发布了新的文献求助10
33秒前
Ava应助傻傻的修洁采纳,获得10
39秒前
Radiance完成签到,获得积分10
41秒前
ceeray23发布了新的文献求助20
41秒前
丘比特应助邓润杰采纳,获得10
42秒前
1033524682完成签到,获得积分10
43秒前
成就觅海完成签到 ,获得积分10
44秒前
窝不想写论文完成签到 ,获得积分10
47秒前
50秒前
51秒前
科研通AI6应助Li采纳,获得50
52秒前
小马甲应助君寻采纳,获得10
52秒前
53秒前
53秒前
53秒前
传奇3应助邓润杰采纳,获得10
54秒前
sandy发布了新的文献求助10
58秒前
科研通AI6应助MIMI采纳,获得10
59秒前
科研通AI6应助邓润杰采纳,获得10
1分钟前
在水一方应助傻傻的修洁采纳,获得10
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
Akaza完成签到 ,获得积分10
1分钟前
1分钟前
高兴宝贝完成签到 ,获得积分10
1分钟前
打打应助傻傻的修洁采纳,获得10
1分钟前
脑洞疼应助munchys采纳,获得10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
达西苏发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573343
求助须知:如何正确求助?哪些是违规求助? 4659427
关于积分的说明 14724572
捐赠科研通 4599247
什么是DOI,文献DOI怎么找? 2524237
邀请新用户注册赠送积分活动 1494711
关于科研通互助平台的介绍 1464737