A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop

流水车间调度 计算机科学 拖延 能源消耗 渡线 编码(社会科学) 调度(生产过程) 作业车间调度 数学优化 算法 地铁列车时刻表 人工智能 数学 操作系统 统计 生物 生态学
作者
Deming Lei,Liang Gao,You-Lian Zheng
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:65 (2): 330-340 被引量:135
标识
DOI:10.1109/tem.2017.2774281
摘要

Hybrid flow shop scheduling problem (HFSP) has been extensively discussed and the main objectives are related to completion time. The reduction of energy consumption should be considered fully in HFSP in the era of green manufacturing. In this study, biobjective energy-efficient HFSP is considered, which is made up of three subproblems including scheduling, machine assignment, and speed selection. A three-string coding method is used to indicate solutions of three subproblems. A new teachers' teaching-learning-based optimization (TTLBO) is proposed to minimize total energy consumption and total tardiness. Total tardiness is regarded as a key objective and a lexicographical method is adopted to compare solutions. TTLBO generates new solutions using a new optimization mechanism and is made up of the self-learning, interactive learning, and teaching of teachers. The learning phase of students are deleted from the algorithm. Multiple neighborhood searches are used to implement the self-learning of teachers and global search based on crossover is chosen to imitate other tivities of teachers. A number of experiments are conducted to test the impact of the new optimization meachanism on the performance of TTLBO and compare TTLBO with other algorithms from the literature. The computational results show that TTLBO is a competitive algorithm for the considered HFSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨秀玲发布了新的文献求助10
1秒前
2秒前
yx_cheng应助CD5522采纳,获得10
2秒前
随便不放假完成签到 ,获得积分10
3秒前
健忘的不悔完成签到,获得积分20
4秒前
6秒前
涵泽发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
科研通AI5应助VitoLi采纳,获得10
8秒前
大花卷完成签到,获得积分10
9秒前
bji发布了新的文献求助10
9秒前
田格本完成签到,获得积分10
12秒前
Skuld发布了新的文献求助10
12秒前
翟大有完成签到 ,获得积分0
14秒前
zxy完成签到,获得积分10
15秒前
18秒前
SYLH应助涵泽采纳,获得10
18秒前
shidandan完成签到 ,获得积分10
19秒前
共享精神应助aldehyde采纳,获得10
19秒前
冰糖葫芦娃完成签到,获得积分10
19秒前
19秒前
20秒前
王晓静完成签到 ,获得积分10
20秒前
21秒前
安详立果完成签到,获得积分10
22秒前
shyotion发布了新的文献求助10
23秒前
Chaiyuan完成签到 ,获得积分10
25秒前
25秒前
无花果应助MXG采纳,获得10
26秒前
27秒前
27秒前
.。。发布了新的文献求助30
27秒前
666发布了新的文献求助10
28秒前
123456发布了新的文献求助10
29秒前
淡然宛凝发布了新的文献求助10
32秒前
32秒前
32秒前
shyotion完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498