A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop

流水车间调度 计算机科学 拖延 能源消耗 渡线 编码(社会科学) 调度(生产过程) 作业车间调度 数学优化 算法 地铁列车时刻表 人工智能 数学 操作系统 统计 生物 生态学
作者
Deming Lei,Liang Gao,You-Lian Zheng
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:65 (2): 330-340 被引量:135
标识
DOI:10.1109/tem.2017.2774281
摘要

Hybrid flow shop scheduling problem (HFSP) has been extensively discussed and the main objectives are related to completion time. The reduction of energy consumption should be considered fully in HFSP in the era of green manufacturing. In this study, biobjective energy-efficient HFSP is considered, which is made up of three subproblems including scheduling, machine assignment, and speed selection. A three-string coding method is used to indicate solutions of three subproblems. A new teachers' teaching-learning-based optimization (TTLBO) is proposed to minimize total energy consumption and total tardiness. Total tardiness is regarded as a key objective and a lexicographical method is adopted to compare solutions. TTLBO generates new solutions using a new optimization mechanism and is made up of the self-learning, interactive learning, and teaching of teachers. The learning phase of students are deleted from the algorithm. Multiple neighborhood searches are used to implement the self-learning of teachers and global search based on crossover is chosen to imitate other tivities of teachers. A number of experiments are conducted to test the impact of the new optimization meachanism on the performance of TTLBO and compare TTLBO with other algorithms from the literature. The computational results show that TTLBO is a competitive algorithm for the considered HFSP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到 ,获得积分10
刚刚
顾矜应助乖猫要努力采纳,获得10
1秒前
传奇3应助yw采纳,获得10
1秒前
刘轩雨发布了新的文献求助10
1秒前
CodeCraft应助咕咕咕采纳,获得10
1秒前
SciGPT应助Till采纳,获得10
2秒前
皇甫锾铬发布了新的文献求助10
2秒前
2秒前
3秒前
猪猪hero应助Levy采纳,获得10
3秒前
大模型应助Zoe采纳,获得30
3秒前
唐三发布了新的文献求助10
3秒前
LIUAiwei完成签到,获得积分10
3秒前
瓅芩发布了新的文献求助150
3秒前
风清扬应助supertkeb采纳,获得30
3秒前
英俊的铭应助Vanessa采纳,获得10
3秒前
充电宝应助小郭子采纳,获得10
4秒前
充电宝应助栗子采纳,获得10
4秒前
个性的饼干完成签到,获得积分10
4秒前
4秒前
rss完成签到,获得积分10
5秒前
桌子不齐完成签到,获得积分10
5秒前
5秒前
galioo3000发布了新的文献求助10
5秒前
xmy发布了新的文献求助10
6秒前
斯文败类应助wang采纳,获得10
7秒前
人文发布了新的文献求助100
7秒前
科研通AI6应助路人甲采纳,获得10
7秒前
7秒前
小七完成签到,获得积分10
7秒前
妞妞发布了新的文献求助10
8秒前
8秒前
Inspiring发布了新的文献求助10
9秒前
大个应助钮小童采纳,获得10
9秒前
9秒前
科研通AI2S应助Pendulium采纳,获得10
10秒前
10秒前
DIDI完成签到,获得积分10
10秒前
11秒前
TP完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721