A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop

流水车间调度 计算机科学 拖延 能源消耗 渡线 编码(社会科学) 调度(生产过程) 作业车间调度 数学优化 算法 地铁列车时刻表 人工智能 数学 操作系统 统计 生物 生态学
作者
Deming Lei,Liang Gao,You-Lian Zheng
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:65 (2): 330-340 被引量:135
标识
DOI:10.1109/tem.2017.2774281
摘要

Hybrid flow shop scheduling problem (HFSP) has been extensively discussed and the main objectives are related to completion time. The reduction of energy consumption should be considered fully in HFSP in the era of green manufacturing. In this study, biobjective energy-efficient HFSP is considered, which is made up of three subproblems including scheduling, machine assignment, and speed selection. A three-string coding method is used to indicate solutions of three subproblems. A new teachers' teaching-learning-based optimization (TTLBO) is proposed to minimize total energy consumption and total tardiness. Total tardiness is regarded as a key objective and a lexicographical method is adopted to compare solutions. TTLBO generates new solutions using a new optimization mechanism and is made up of the self-learning, interactive learning, and teaching of teachers. The learning phase of students are deleted from the algorithm. Multiple neighborhood searches are used to implement the self-learning of teachers and global search based on crossover is chosen to imitate other tivities of teachers. A number of experiments are conducted to test the impact of the new optimization meachanism on the performance of TTLBO and compare TTLBO with other algorithms from the literature. The computational results show that TTLBO is a competitive algorithm for the considered HFSP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Swu完成签到,获得积分10
刚刚
Solstice发布了新的文献求助10
刚刚
刚刚
JamesPei应助不喜采纳,获得10
1秒前
Clare发布了新的文献求助10
1秒前
qiyun完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
2秒前
认真惜梦关注了科研通微信公众号
3秒前
4秒前
生动的指甲油完成签到,获得积分10
4秒前
等待geduo发布了新的文献求助10
4秒前
陈住气发布了新的文献求助10
4秒前
赵丽红发布了新的文献求助10
5秒前
小学生发布了新的文献求助10
5秒前
超级的鼠标完成签到,获得积分10
5秒前
未来EBM发布了新的文献求助30
5秒前
jou完成签到,获得积分10
5秒前
5秒前
进击的PhD应助Fng11采纳,获得20
7秒前
7秒前
Psy关闭了Psy文献求助
8秒前
爆米花应助荷珠采纳,获得10
8秒前
zz发布了新的文献求助10
8秒前
123完成签到,获得积分10
9秒前
9秒前
9秒前
思源应助大白采纳,获得10
10秒前
TulIP完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
Clare完成签到,获得积分20
11秒前
霂燐发布了新的文献求助10
13秒前
lili7777发布了新的文献求助20
13秒前
14秒前
one_more_thing完成签到,获得积分20
14秒前
大龙哥886应助寄风采纳,获得20
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642013
求助须知:如何正确求助?哪些是违规求助? 4757923
关于积分的说明 15015955
捐赠科研通 4800475
什么是DOI,文献DOI怎么找? 2566095
邀请新用户注册赠送积分活动 1524208
关于科研通互助平台的介绍 1483840