Beyond Mono-, Di-, and Trisulfides: Synthesizing Vanadium Tetrasulfide (VS4) Films for Energy Conversion

分析化学(期刊) 氧化钒 扫描电子显微镜 材料科学 光电化学 带隙 化学 光电化学电池 电解质 电极 电化学 无机化学 光电子学 物理化学 复合材料 色谱法
作者
Eduardo Flores,Esmeralda Muñoz‐Cortés,J. Bodega,Olga Caballero‐Calero,Marisol Martín‐González,C. Sánchez,J.R. Ares,Isabel J. Ferrer
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:1 (5): 2333-2340 被引量:20
标识
DOI:10.1021/acsaem.8b00449
摘要

Vanadium tetrasulfide (VS4, called patronite as a mineral) is a one-dimensional compound with promising properties for energy conversion applications. However, it has been scarcely investigated because of its complex synthesis. In this work, we report a detailed investigation about the formation mechanism of VS4 (V4+(S22–)2) as well as its structural, transport, and photoelectrochemical properties. To this aim, VS4 films were grown by a solid–gas reaction process between vanadium films and sulfur at temperatures between 350 and 450 °C during different reaction times. Film characterization (X-ray diffraction, energy-dispersive analysis of X-ray, micro-Raman spectroscopy, and scanning electron microscopy) reveals the formation of monoclinic VS4 nanorods (I2/C) as single crystalline phase in very short reaction times (t < 5 h). Optical characterization was carried out by reflectance and transmittance measurements to obtain the optical absorption coefficient (α = 104 cm–1 at photon energies higher than 1.6 eV). From these measurements, a direct optical band gap of 1.35 ± 0.05 eV is obtained. Additionally, VS4 films were used as photoanodes of a photoelectrochemical cell (PEC) with a platinum foil as counter electrode and a Ag/AgCl reference electrode to characterize the VS4/electrolyte (aqueous 0.5 M Na2SO3) interface. Finally, the evolved hydrogen under 200 mW/cm2 white light illumination over the VS4/interface at 0.3 V (Ag/AgCl) bias potential was quantified by a quadrupole mass spectrometer (QMS) reaching fluxes of ∼20 μmol/h.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
九九完成签到,获得积分10
刚刚
dwl完成签到 ,获得积分10
刚刚
懵懂的尔风完成签到 ,获得积分10
刚刚
刚刚
456完成签到,获得积分10
刚刚
科研通AI5应助以恒之心采纳,获得10
1秒前
易哒哒发布了新的文献求助10
2秒前
2秒前
3秒前
微笑完成签到,获得积分10
3秒前
火星上的映安完成签到 ,获得积分10
3秒前
Microgan完成签到,获得积分10
3秒前
进击的小胳膊完成签到,获得积分10
4秒前
4秒前
科研通AI5应助徐徐采纳,获得80
4秒前
4秒前
Orange应助Joshua采纳,获得10
5秒前
6秒前
6秒前
7秒前
蒋时晏应助陶醉薯片采纳,获得30
7秒前
7秒前
执着的灯泡完成签到,获得积分10
7秒前
睡到自然醒完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
Musen完成签到,获得积分10
8秒前
科研通AI5应助叫滚滚采纳,获得10
8秒前
8秒前
123456发布了新的文献求助10
8秒前
大方安白发布了新的文献求助10
9秒前
Hello应助正直冰露采纳,获得10
9秒前
lyy完成签到 ,获得积分10
10秒前
沈随便发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
灵巧荆发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762