Localization of Diffusion-Based Inpainting in Digital Images

修补 人工智能 计算机科学 计算机视觉 图像(数学) 模式识别(心理学) 特征(语言学) 数字图像 过程(计算) 图像复原 扩散 图像处理 哲学 语言学 物理 热力学 操作系统
作者
Haodong Li,Weiqi Luo,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:12 (12): 3050-3064 被引量:130
标识
DOI:10.1109/tifs.2017.2730822
摘要

Image inpainting, an image processing technique for restoring missing or damaged image regions, can be utilized by forgers for removing objects in digital images. Since no obviously perceptible artifacts are left after inpainting, it is necessary to develop methods for detecting the presence of inpainting. In general, there are two main categories of image inpainting techniques: exemplar-based and diffusion-based techniques. Although several methods have been proposed for detecting exemplar-based inpainting, there is still no effective method for detecting diffusion-based inpainting. Usually, the tampered regions manipulated by diffusion-based inpainting techniques are much smaller than those manipulated by exemplar-based ones, presenting more challenges in detecting these regions. As a pioneering attempt, this paper proposes a method for the localization of diffusion-based inpainted regions in digital images. We first analyze the diffusion process in inpainting, and observe that the changes in the image Laplacian along the direction perpendicular to the gradient are different in the inpainted and untouched regions. Following this observation, we construct a feature set based on the intra-channel and inter-channel local variances of the changes to identify the inpainted regions. Finally, two effective post-processing operations are designed for further refining of the localization result. The extensive experimental results evaluated on both synthetic and realistic inpainted images show the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘应助yukang采纳,获得10
刚刚
顺顺完成签到,获得积分10
1秒前
煜宁HY发布了新的文献求助10
1秒前
科研通AI6应助摇摇奶昔采纳,获得10
2秒前
cwwqt完成签到,获得积分10
2秒前
TSWAKS完成签到,获得积分20
2秒前
3秒前
脑洞疼应助JIAO采纳,获得10
3秒前
二丙完成签到 ,获得积分10
3秒前
3秒前
李林发布了新的文献求助10
3秒前
zcl应助小慈采纳,获得20
4秒前
FTL完成签到,获得积分20
4秒前
爱喝佳得乐完成签到,获得积分10
5秒前
阿航完成签到,获得积分10
5秒前
6秒前
科研通AI5应助足下慵才采纳,获得10
6秒前
王也夫完成签到,获得积分20
7秒前
FTL发布了新的文献求助30
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
jz完成签到,获得积分10
10秒前
zzy发布了新的文献求助10
10秒前
舒服的井完成签到,获得积分10
10秒前
10秒前
土豪的土豆完成签到 ,获得积分10
11秒前
11秒前
11秒前
浮游应助江上清风游采纳,获得10
11秒前
12秒前
归尘发布了新的文献求助10
12秒前
Jemry发布了新的文献求助10
12秒前
13秒前
13秒前
Fuj发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
大白发布了新的文献求助50
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4673874
求助须知:如何正确求助?哪些是违规求助? 4052224
关于积分的说明 12531184
捐赠科研通 3745991
什么是DOI,文献DOI怎么找? 2068917
邀请新用户注册赠送积分活动 1098052
科研通“疑难数据库(出版商)”最低求助积分说明 978276