Theoretical exploration towards high-efficiency tunnel oxide passivated carrier-selective contacts (TOPCon) solar cells

钝化 材料科学 薄脆饼 量子隧道 兴奋剂 电流密度 氧化物 光电子学 太阳能电池 图层(电子) 分析化学(期刊) 纳米技术 化学 物理 冶金 量子力学 色谱法
作者
Yuheng Zeng,Hui Tong,Cheng Quan,Liang Cai,Zhenhai Yang,Kangmin Chen,Zhefan Yuan,Congyi Wu,Baojie Yan,Zhenhai Yang,Jichun Ye
出处
期刊:Solar Energy [Elsevier]
卷期号:155: 654-660 被引量:63
标识
DOI:10.1016/j.solener.2017.07.014
摘要

In this work, we used the numerical simulation method to study the tunnel oxide passivated carrier-selective contacts (TOPCon) structured solar cells, with the focus especially on the paths towards excellent surface passivation and low contact resistance. The presence of an ultra-thin silicon oxide (SiO2) with high quality (typically low interface-states density, Dit ≈ 1 × 1010 cm−2 eV−1 and low pinhole density, Dph < 1 × 10−4) suppresses the recombination of carriers at the rear surface. As a result, implied open circuit voltage (iVoc) could be promoted by a value of more than 30 mV comparing with the solar cell without oxide layer, which is the primary benefit originated from TOPCon structure. Corresponding, the iVoc and recombination current density (Joe) could reach ∼745 mV and ∼9.5 fA/cm2 (Δn = 5 × 1015 cm−3) for the 1-Ω cm and 200-μm n-type wafer covered with high-quality oxide and n+-Si layers. In addition to passivation, a well-designed SiO2/n+-Si backside structure is also critical for carrier collection. The tunneling current is susceptible to oxide thickness, i.e., a 0.2-nm increase in SiO2 thickness results in the decrease of the tunneling current by more than one magnitude under certain circumstance. Fortunately, raising the doping in n+-Si layer enhances the tunneling possibility of electron, which allows for a thicker oxide that is favorable to a stable mass production. The simulation suggests that to obtain a high fill factor (FF, >84%), a minimum forward-bias saturated tunneling current of about 0.01 A/cm2, more favorable of 0.1 A/cm2, is required for the Si/SiO2/n+-Si structure. Generally, our work offers an improved understanding of tunnel oxide, doping layer and their combined effects on TOPCon solar cells. Besides simulation, we also discuss the practical manufactures of how to control the above mentioned parameters, as well as the problems needed to be solved for further work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sniper111完成签到,获得积分10
2秒前
acuter发布了新的文献求助10
2秒前
zdx1022完成签到,获得积分10
3秒前
bierbia完成签到,获得积分10
4秒前
霸气的诗兰应助H..采纳,获得10
6秒前
6秒前
潇湘雪月完成签到,获得积分10
6秒前
小辣椒完成签到 ,获得积分10
6秒前
7秒前
7秒前
grnn完成签到,获得积分10
10秒前
WangRuize发布了新的文献求助10
10秒前
yyyy完成签到,获得积分10
10秒前
S飞完成签到 ,获得积分10
11秒前
蒋海应助知性的凡梅采纳,获得10
12秒前
牛马刘完成签到,获得积分10
13秒前
水月完成签到,获得积分10
13秒前
Orange应助小杜采纳,获得10
13秒前
莫小烦发布了新的文献求助10
13秒前
15秒前
16秒前
科研通AI2S应助cannon8采纳,获得10
16秒前
刻苦小丸子完成签到,获得积分10
16秒前
宁幼萱发布了新的文献求助10
16秒前
拼搏问薇完成签到 ,获得积分10
17秒前
silence完成签到,获得积分10
18秒前
orixero应助acuter采纳,获得10
18秒前
Dawn_ZZZ发布了新的文献求助10
19秒前
19秒前
jf完成签到,获得积分10
21秒前
kk完成签到,获得积分10
21秒前
lpz完成签到 ,获得积分10
22秒前
25秒前
Jasmineyfz完成签到 ,获得积分10
25秒前
爆米花应助滴滴哩哩采纳,获得10
26秒前
27秒前
28秒前
29秒前
小杜发布了新的文献求助10
29秒前
29秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085551
求助须知:如何正确求助?哪些是违规求助? 2738439
关于积分的说明 7549962
捐赠科研通 2388193
什么是DOI,文献DOI怎么找? 1266339
科研通“疑难数据库(出版商)”最低求助积分说明 613430
版权声明 598591