已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A probabilistic approach to remaining useful life prediction of rolling element bearings

先验概率 断层(地质) 计算机科学 不可见的 降级(电信) 概率逻辑 方位(导航) 振动 贝叶斯概率 故障检测与隔离 可靠性工程 数据挖掘 工程类 人工智能 数学 计量经济学 地质学 量子力学 执行机构 地震学 物理 电信
作者
Guru Prakash,Sriram Narasimhan,Mahesh D. Pandey
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:18 (2): 466-485 被引量:21
标识
DOI:10.1177/1475921718758517
摘要

In this article, we present a probabilistic approach for fault detection and prognosis of rolling element bearings based on a two-phase degradation model. One of the main issues in dealing with bearing degradation is that the degradation mechanism is unobservable and can only be inferred through appropriate surrogate measures obtained from indirect sensory measurements. Furthermore, the stochastic nature of the degradation path renders fault detection and estimating the end-of-life characteristics from such data extremely challenging. When such components are a part of a larger system, the exact degradation path depends on both the operating and loading conditions, which means that the most effective condition monitoring approach should estimate the degradation model parameters under operational conditions, and not solely from isolated component testing or historical information. Motivated by these challenges, a two-phase degradation model using surrogate measures of degradation from vibration measurements is proposed and a Bayesian approach is used to estimate the model parameters. The underlying methodology involves using priors from historical data, while the posterior calculations are undertaken using surrogate measures obtained from a monitored unit combined with the aforesaid priors. The problem of fault detection is posed as a change point location problem. This allows the prior knowledge obtained from the past failures to be integrated for maintenance planning of a currently working unit in a systematic way. The correlation between the degradation rate and the time of occurrence of the change point, an often overlooked aspect in prognosis, is also considered in here. A numerical example and a case study are presented to illustrate the overall methodology and the results obtained using this approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyf完成签到,获得积分10
1秒前
2秒前
明哲派发布了新的文献求助10
2秒前
3秒前
bkagyin应助ppxx采纳,获得10
3秒前
今天别生气完成签到,获得积分10
3秒前
6秒前
领导范儿应助咖啡不加糖采纳,获得10
7秒前
wondor1111发布了新的文献求助10
7秒前
大模型应助优雅书竹采纳,获得10
7秒前
8秒前
yesmider完成签到,获得积分10
9秒前
眼睛大的缘郡完成签到,获得积分20
9秒前
9秒前
dyd发布了新的文献求助10
11秒前
zgjc发布了新的文献求助10
12秒前
共享精神应助ZZZ采纳,获得10
12秒前
13秒前
13秒前
Lin_Focus发布了新的文献求助10
13秒前
13秒前
王赛雅wang12_完成签到,获得积分20
13秒前
s20001021s完成签到 ,获得积分10
14秒前
ting发布了新的文献求助10
14秒前
小跑阿甘完成签到,获得积分10
14秒前
丘比特应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得50
17秒前
烟花应助科研通管家采纳,获得10
17秒前
生动路人发布了新的文献求助10
17秒前
852应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089714
求助须知:如何正确求助?哪些是违规求助? 4304338
关于积分的说明 13414052
捐赠科研通 4130011
什么是DOI,文献DOI怎么找? 2261956
邀请新用户注册赠送积分活动 1265979
关于科研通互助平台的介绍 1200641