A probabilistic approach to remaining useful life prediction of rolling element bearings

先验概率 断层(地质) 计算机科学 不可见的 降级(电信) 概率逻辑 方位(导航) 振动 贝叶斯概率 故障检测与隔离 可靠性工程 数据挖掘 工程类 人工智能 数学 计量经济学 地质学 量子力学 执行机构 地震学 物理 电信
作者
Guru Prakash,Sriram Narasimhan,Mahesh D. Pandey
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:18 (2): 466-485 被引量:21
标识
DOI:10.1177/1475921718758517
摘要

In this article, we present a probabilistic approach for fault detection and prognosis of rolling element bearings based on a two-phase degradation model. One of the main issues in dealing with bearing degradation is that the degradation mechanism is unobservable and can only be inferred through appropriate surrogate measures obtained from indirect sensory measurements. Furthermore, the stochastic nature of the degradation path renders fault detection and estimating the end-of-life characteristics from such data extremely challenging. When such components are a part of a larger system, the exact degradation path depends on both the operating and loading conditions, which means that the most effective condition monitoring approach should estimate the degradation model parameters under operational conditions, and not solely from isolated component testing or historical information. Motivated by these challenges, a two-phase degradation model using surrogate measures of degradation from vibration measurements is proposed and a Bayesian approach is used to estimate the model parameters. The underlying methodology involves using priors from historical data, while the posterior calculations are undertaken using surrogate measures obtained from a monitored unit combined with the aforesaid priors. The problem of fault detection is posed as a change point location problem. This allows the prior knowledge obtained from the past failures to be integrated for maintenance planning of a currently working unit in a systematic way. The correlation between the degradation rate and the time of occurrence of the change point, an often overlooked aspect in prognosis, is also considered in here. A numerical example and a case study are presented to illustrate the overall methodology and the results obtained using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的棒球完成签到 ,获得积分10
刚刚
小小小乐完成签到 ,获得积分10
刚刚
跳不起来的大神完成签到 ,获得积分10
1秒前
吕邓宏完成签到 ,获得积分10
1秒前
zlx发布了新的文献求助10
2秒前
单于完成签到,获得积分10
2秒前
neu_zxy1991完成签到,获得积分10
3秒前
fossil完成签到,获得积分10
3秒前
纯情的远山完成签到,获得积分10
4秒前
jojo完成签到 ,获得积分10
4秒前
含糊的无声完成签到 ,获得积分10
6秒前
pluto应助单于采纳,获得10
8秒前
Bethune124完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
Dont_test_me完成签到 ,获得积分10
11秒前
14秒前
炸土豆完成签到 ,获得积分10
17秒前
Litoivda发布了新的文献求助10
19秒前
Gavin完成签到,获得积分10
21秒前
srz楠楠完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
一只橙子完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
lin完成签到,获得积分10
23秒前
ntrip完成签到,获得积分10
23秒前
树莓苹果完成签到,获得积分20
24秒前
吴旭东完成签到,获得积分10
25秒前
28秒前
栗子完成签到,获得积分10
29秒前
黑白发布了新的文献求助10
29秒前
29秒前
30秒前
chenjun7080完成签到,获得积分10
30秒前
深情安青应助Sunny采纳,获得10
32秒前
萝卜卷心菜完成签到 ,获得积分10
33秒前
嘎嘣脆完成签到 ,获得积分10
33秒前
sxb10101完成签到,获得积分0
33秒前
微笑枫完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
阿冲发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071