A probabilistic approach to remaining useful life prediction of rolling element bearings

先验概率 断层(地质) 计算机科学 不可见的 降级(电信) 概率逻辑 方位(导航) 振动 贝叶斯概率 故障检测与隔离 可靠性工程 数据挖掘 工程类 人工智能 数学 计量经济学 地质学 量子力学 执行机构 地震学 物理 电信
作者
Guru Prakash,Sriram Narasimhan,Mahesh D. Pandey
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:18 (2): 466-485 被引量:21
标识
DOI:10.1177/1475921718758517
摘要

In this article, we present a probabilistic approach for fault detection and prognosis of rolling element bearings based on a two-phase degradation model. One of the main issues in dealing with bearing degradation is that the degradation mechanism is unobservable and can only be inferred through appropriate surrogate measures obtained from indirect sensory measurements. Furthermore, the stochastic nature of the degradation path renders fault detection and estimating the end-of-life characteristics from such data extremely challenging. When such components are a part of a larger system, the exact degradation path depends on both the operating and loading conditions, which means that the most effective condition monitoring approach should estimate the degradation model parameters under operational conditions, and not solely from isolated component testing or historical information. Motivated by these challenges, a two-phase degradation model using surrogate measures of degradation from vibration measurements is proposed and a Bayesian approach is used to estimate the model parameters. The underlying methodology involves using priors from historical data, while the posterior calculations are undertaken using surrogate measures obtained from a monitored unit combined with the aforesaid priors. The problem of fault detection is posed as a change point location problem. This allows the prior knowledge obtained from the past failures to be integrated for maintenance planning of a currently working unit in a systematic way. The correlation between the degradation rate and the time of occurrence of the change point, an often overlooked aspect in prognosis, is also considered in here. A numerical example and a case study are presented to illustrate the overall methodology and the results obtained using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tidongzhiwu发布了新的文献求助10
刚刚
李健应助故然采纳,获得10
刚刚
动力小滋完成签到,获得积分10
刚刚
小蘑菇应助菲菲采纳,获得10
刚刚
lottian关注了科研通微信公众号
刚刚
清爽难胜发布了新的文献求助10
1秒前
kkk发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
进击的momo完成签到,获得积分10
2秒前
3秒前
了哟完成签到,获得积分10
3秒前
Jeanie完成签到,获得积分10
3秒前
3秒前
haha发布了新的文献求助10
4秒前
大个应助黑曜石采纳,获得10
4秒前
Jasper应助郭濹涵采纳,获得10
4秒前
鹿梦发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Doki发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
ug完成签到,获得积分10
6秒前
ITACHI发布了新的文献求助10
7秒前
米龙完成签到,获得积分10
7秒前
汉堡完成签到,获得积分10
7秒前
共渡发布了新的文献求助10
8秒前
可爱的函函应助ldn采纳,获得30
8秒前
8秒前
8秒前
动人的乾发布了新的文献求助10
8秒前
8秒前
zzy发布了新的文献求助10
8秒前
小蘑菇应助Jinyang采纳,获得10
9秒前
大溺完成签到 ,获得积分10
9秒前
9秒前
西门不二发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710787
求助须知:如何正确求助?哪些是违规求助? 5200765
关于积分的说明 15262070
捐赠科研通 4863340
什么是DOI,文献DOI怎么找? 2610590
邀请新用户注册赠送积分活动 1560857
关于科研通互助平台的介绍 1518463