A probabilistic approach to remaining useful life prediction of rolling element bearings

先验概率 断层(地质) 计算机科学 不可见的 降级(电信) 概率逻辑 方位(导航) 振动 贝叶斯概率 故障检测与隔离 可靠性工程 数据挖掘 工程类 人工智能 数学 计量经济学 地质学 量子力学 执行机构 地震学 物理 电信
作者
Guru Prakash,Sriram Narasimhan,Mahesh D. Pandey
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:18 (2): 466-485 被引量:21
标识
DOI:10.1177/1475921718758517
摘要

In this article, we present a probabilistic approach for fault detection and prognosis of rolling element bearings based on a two-phase degradation model. One of the main issues in dealing with bearing degradation is that the degradation mechanism is unobservable and can only be inferred through appropriate surrogate measures obtained from indirect sensory measurements. Furthermore, the stochastic nature of the degradation path renders fault detection and estimating the end-of-life characteristics from such data extremely challenging. When such components are a part of a larger system, the exact degradation path depends on both the operating and loading conditions, which means that the most effective condition monitoring approach should estimate the degradation model parameters under operational conditions, and not solely from isolated component testing or historical information. Motivated by these challenges, a two-phase degradation model using surrogate measures of degradation from vibration measurements is proposed and a Bayesian approach is used to estimate the model parameters. The underlying methodology involves using priors from historical data, while the posterior calculations are undertaken using surrogate measures obtained from a monitored unit combined with the aforesaid priors. The problem of fault detection is posed as a change point location problem. This allows the prior knowledge obtained from the past failures to be integrated for maintenance planning of a currently working unit in a systematic way. The correlation between the degradation rate and the time of occurrence of the change point, an often overlooked aspect in prognosis, is also considered in here. A numerical example and a case study are presented to illustrate the overall methodology and the results obtained using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dew应助xzn1123采纳,获得20
刚刚
胡图图发布了新的文献求助10
刚刚
1秒前
1秒前
碧蓝靳发布了新的文献求助10
1秒前
miu完成签到,获得积分10
2秒前
2秒前
无极微光应助金皮卡采纳,获得20
2秒前
2秒前
阿芜发布了新的文献求助20
2秒前
2秒前
无名应助受伤的水瑶采纳,获得10
3秒前
难搞发布了新的文献求助10
3秒前
阿六儿完成签到,获得积分10
3秒前
3秒前
隐形曼青应助小豪采纳,获得10
4秒前
NexusExplorer应助呆萌综合征采纳,获得10
4秒前
4秒前
4秒前
qhf完成签到 ,获得积分10
5秒前
wms完成签到,获得积分10
5秒前
阿吟发布了新的文献求助10
5秒前
5秒前
5秒前
wwl发布了新的文献求助10
5秒前
唠叨的逍遥完成签到,获得积分10
6秒前
jojo发布了新的文献求助10
6秒前
xzn1123重新开启了if文献应助
6秒前
芝士饼干完成签到 ,获得积分10
7秒前
小巧亦竹完成签到,获得积分10
7秒前
7秒前
wms发布了新的文献求助10
7秒前
SciGPT应助miu采纳,获得10
7秒前
爱你哦发布了新的文献求助10
7秒前
Yingqilin完成签到,获得积分10
8秒前
8秒前
俏皮的老三完成签到 ,获得积分10
9秒前
9秒前
shoanofna发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665611
求助须知:如何正确求助?哪些是违规求助? 4877669
关于积分的说明 15114824
捐赠科研通 4824856
什么是DOI,文献DOI怎么找? 2582972
邀请新用户注册赠送积分活动 1536984
关于科研通互助平台的介绍 1495418