亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A probabilistic approach to remaining useful life prediction of rolling element bearings

先验概率 断层(地质) 计算机科学 不可见的 降级(电信) 概率逻辑 方位(导航) 振动 贝叶斯概率 故障检测与隔离 可靠性工程 数据挖掘 工程类 人工智能 数学 计量经济学 地质学 量子力学 执行机构 地震学 物理 电信
作者
Guru Prakash,Sriram Narasimhan,Mahesh D. Pandey
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:18 (2): 466-485 被引量:21
标识
DOI:10.1177/1475921718758517
摘要

In this article, we present a probabilistic approach for fault detection and prognosis of rolling element bearings based on a two-phase degradation model. One of the main issues in dealing with bearing degradation is that the degradation mechanism is unobservable and can only be inferred through appropriate surrogate measures obtained from indirect sensory measurements. Furthermore, the stochastic nature of the degradation path renders fault detection and estimating the end-of-life characteristics from such data extremely challenging. When such components are a part of a larger system, the exact degradation path depends on both the operating and loading conditions, which means that the most effective condition monitoring approach should estimate the degradation model parameters under operational conditions, and not solely from isolated component testing or historical information. Motivated by these challenges, a two-phase degradation model using surrogate measures of degradation from vibration measurements is proposed and a Bayesian approach is used to estimate the model parameters. The underlying methodology involves using priors from historical data, while the posterior calculations are undertaken using surrogate measures obtained from a monitored unit combined with the aforesaid priors. The problem of fault detection is posed as a change point location problem. This allows the prior knowledge obtained from the past failures to be integrated for maintenance planning of a currently working unit in a systematic way. The correlation between the degradation rate and the time of occurrence of the change point, an often overlooked aspect in prognosis, is also considered in here. A numerical example and a case study are presented to illustrate the overall methodology and the results obtained using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
25秒前
null应助科研通管家采纳,获得10
25秒前
null应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
顾矜应助科研通管家采纳,获得20
25秒前
jarrykim完成签到,获得积分10
40秒前
41秒前
上官若男应助LukeLion采纳,获得10
46秒前
所所应助轻松一曲采纳,获得10
53秒前
每㐬山风完成签到 ,获得积分10
59秒前
1分钟前
LukeLion发布了新的文献求助10
1分钟前
1分钟前
微醺潮汐发布了新的文献求助10
1分钟前
852应助dbyy采纳,获得10
1分钟前
灯光师完成签到,获得积分10
1分钟前
1分钟前
1分钟前
轻松一曲发布了新的文献求助10
1分钟前
轻松一曲完成签到,获得积分10
1分钟前
动听的又亦完成签到 ,获得积分10
2分钟前
2分钟前
du关闭了du文献求助
2分钟前
答辩完成签到 ,获得积分10
2分钟前
2分钟前
领导范儿应助LiuHD采纳,获得10
2分钟前
JoeyJin完成签到,获得积分10
2分钟前
科目三应助zhang采纳,获得10
2分钟前
2分钟前
xaopng完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
dbyy发布了新的文献求助10
3分钟前
zhang发布了新的文献求助10
3分钟前
3分钟前
LukeLion发布了新的文献求助10
3分钟前
zhang关注了科研通微信公众号
3分钟前
MOLV应助柚子想吃橘子采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628131
求助须知:如何正确求助?哪些是违规求助? 4715760
关于积分的说明 14963712
捐赠科研通 4785826
什么是DOI,文献DOI怎么找? 2555337
邀请新用户注册赠送积分活动 1516672
关于科研通互助平台的介绍 1477224