A probabilistic approach to remaining useful life prediction of rolling element bearings

先验概率 断层(地质) 计算机科学 不可见的 降级(电信) 概率逻辑 方位(导航) 振动 贝叶斯概率 故障检测与隔离 可靠性工程 数据挖掘 工程类 人工智能 数学 计量经济学 地质学 电信 物理 量子力学 地震学 执行机构
作者
Guru Prakash,Sriram Narasimhan,Mahesh D. Pandey
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:18 (2): 466-485 被引量:21
标识
DOI:10.1177/1475921718758517
摘要

In this article, we present a probabilistic approach for fault detection and prognosis of rolling element bearings based on a two-phase degradation model. One of the main issues in dealing with bearing degradation is that the degradation mechanism is unobservable and can only be inferred through appropriate surrogate measures obtained from indirect sensory measurements. Furthermore, the stochastic nature of the degradation path renders fault detection and estimating the end-of-life characteristics from such data extremely challenging. When such components are a part of a larger system, the exact degradation path depends on both the operating and loading conditions, which means that the most effective condition monitoring approach should estimate the degradation model parameters under operational conditions, and not solely from isolated component testing or historical information. Motivated by these challenges, a two-phase degradation model using surrogate measures of degradation from vibration measurements is proposed and a Bayesian approach is used to estimate the model parameters. The underlying methodology involves using priors from historical data, while the posterior calculations are undertaken using surrogate measures obtained from a monitored unit combined with the aforesaid priors. The problem of fault detection is posed as a change point location problem. This allows the prior knowledge obtained from the past failures to be integrated for maintenance planning of a currently working unit in a systematic way. The correlation between the degradation rate and the time of occurrence of the change point, an often overlooked aspect in prognosis, is also considered in here. A numerical example and a case study are presented to illustrate the overall methodology and the results obtained using this approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
克姑美完成签到 ,获得积分10
2秒前
pangao完成签到,获得积分10
2秒前
ysssbq完成签到,获得积分10
4秒前
5秒前
上好佳完成签到 ,获得积分10
5秒前
大模型应助Yeong采纳,获得10
6秒前
量子星尘发布了新的文献求助30
6秒前
7秒前
123完成签到,获得积分10
7秒前
谢陈完成签到 ,获得积分10
8秒前
lilili完成签到,获得积分10
9秒前
10秒前
xiaoying发布了新的文献求助10
10秒前
SciGPT应助Eric_Liuzy采纳,获得10
11秒前
liu完成签到 ,获得积分10
11秒前
qixiaoqi发布了新的文献求助10
12秒前
13秒前
A溶大美噶发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
16秒前
17秒前
kevin发布了新的文献求助10
17秒前
满意的初南完成签到 ,获得积分10
18秒前
橙橙橙发布了新的文献求助10
18秒前
万能图书馆应助EVEN采纳,获得10
18秒前
18秒前
Yeong发布了新的文献求助10
19秒前
范先生发布了新的文献求助10
20秒前
disciple完成签到,获得积分10
21秒前
沉默凌寒完成签到,获得积分10
21秒前
cc完成签到,获得积分10
21秒前
22秒前
糖豆完成签到,获得积分10
22秒前
smottom完成签到,获得积分0
23秒前
贰鸟完成签到,获得积分0
23秒前
23秒前
火山蜗牛发布了新的文献求助10
24秒前
腿毛没啦完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048