A probabilistic approach to remaining useful life prediction of rolling element bearings

先验概率 断层(地质) 计算机科学 不可见的 降级(电信) 概率逻辑 方位(导航) 振动 贝叶斯概率 故障检测与隔离 可靠性工程 数据挖掘 工程类 人工智能 数学 计量经济学 地质学 量子力学 执行机构 地震学 物理 电信
作者
Guru Prakash,Sriram Narasimhan,Mahesh D. Pandey
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:18 (2): 466-485 被引量:21
标识
DOI:10.1177/1475921718758517
摘要

In this article, we present a probabilistic approach for fault detection and prognosis of rolling element bearings based on a two-phase degradation model. One of the main issues in dealing with bearing degradation is that the degradation mechanism is unobservable and can only be inferred through appropriate surrogate measures obtained from indirect sensory measurements. Furthermore, the stochastic nature of the degradation path renders fault detection and estimating the end-of-life characteristics from such data extremely challenging. When such components are a part of a larger system, the exact degradation path depends on both the operating and loading conditions, which means that the most effective condition monitoring approach should estimate the degradation model parameters under operational conditions, and not solely from isolated component testing or historical information. Motivated by these challenges, a two-phase degradation model using surrogate measures of degradation from vibration measurements is proposed and a Bayesian approach is used to estimate the model parameters. The underlying methodology involves using priors from historical data, while the posterior calculations are undertaken using surrogate measures obtained from a monitored unit combined with the aforesaid priors. The problem of fault detection is posed as a change point location problem. This allows the prior knowledge obtained from the past failures to be integrated for maintenance planning of a currently working unit in a systematic way. The correlation between the degradation rate and the time of occurrence of the change point, an often overlooked aspect in prognosis, is also considered in here. A numerical example and a case study are presented to illustrate the overall methodology and the results obtained using this approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhscu完成签到,获得积分10
1秒前
LJL发布了新的文献求助10
1秒前
华仔应助是问采纳,获得10
3秒前
烟花应助香山叶正红采纳,获得10
7秒前
SciGPT应助整齐凌萱采纳,获得10
8秒前
8秒前
梧wu发布了新的文献求助10
10秒前
12秒前
13秒前
tudousi完成签到 ,获得积分10
13秒前
英俊的铭应助liweiDr采纳,获得10
14秒前
14秒前
14秒前
15秒前
廖述祥完成签到,获得积分10
15秒前
98完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
冷灰天花板完成签到,获得积分10
18秒前
是问发布了新的文献求助10
19秒前
20秒前
机智的凡梦完成签到,获得积分10
21秒前
Jasper应助kjding采纳,获得10
21秒前
21秒前
整齐凌萱发布了新的文献求助10
21秒前
Owen应助梧wu采纳,获得10
22秒前
山见山发布了新的文献求助10
24秒前
8R60d8应助Fury采纳,获得10
24秒前
啊哈发布了新的文献求助10
25秒前
zhikaiyici完成签到 ,获得积分10
27秒前
30秒前
小王应助竹外桃花采纳,获得30
31秒前
liweiDr发布了新的文献求助10
34秒前
梦游游游完成签到,获得积分10
35秒前
36秒前
老肖应助Jessica采纳,获得10
38秒前
kjding发布了新的文献求助10
38秒前
Schiller应助kkjl采纳,获得10
38秒前
Evelvon完成签到,获得积分10
39秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139294
求助须知:如何正确求助?哪些是违规求助? 2790157
关于积分的说明 7794200
捐赠科研通 2446581
什么是DOI,文献DOI怎么找? 1301284
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109