亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A probabilistic approach to remaining useful life prediction of rolling element bearings

先验概率 断层(地质) 计算机科学 不可见的 降级(电信) 概率逻辑 方位(导航) 振动 贝叶斯概率 故障检测与隔离 可靠性工程 数据挖掘 工程类 人工智能 数学 计量经济学 地质学 量子力学 执行机构 地震学 物理 电信
作者
Guru Prakash,Sriram Narasimhan,Mahesh D. Pandey
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:18 (2): 466-485 被引量:21
标识
DOI:10.1177/1475921718758517
摘要

In this article, we present a probabilistic approach for fault detection and prognosis of rolling element bearings based on a two-phase degradation model. One of the main issues in dealing with bearing degradation is that the degradation mechanism is unobservable and can only be inferred through appropriate surrogate measures obtained from indirect sensory measurements. Furthermore, the stochastic nature of the degradation path renders fault detection and estimating the end-of-life characteristics from such data extremely challenging. When such components are a part of a larger system, the exact degradation path depends on both the operating and loading conditions, which means that the most effective condition monitoring approach should estimate the degradation model parameters under operational conditions, and not solely from isolated component testing or historical information. Motivated by these challenges, a two-phase degradation model using surrogate measures of degradation from vibration measurements is proposed and a Bayesian approach is used to estimate the model parameters. The underlying methodology involves using priors from historical data, while the posterior calculations are undertaken using surrogate measures obtained from a monitored unit combined with the aforesaid priors. The problem of fault detection is posed as a change point location problem. This allows the prior knowledge obtained from the past failures to be integrated for maintenance planning of a currently working unit in a systematic way. The correlation between the degradation rate and the time of occurrence of the change point, an often overlooked aspect in prognosis, is also considered in here. A numerical example and a case study are presented to illustrate the overall methodology and the results obtained using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱的书翠完成签到,获得积分10
11秒前
无极微光应助白华苍松采纳,获得20
44秒前
香蕉觅云应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
Jane发布了新的文献求助10
59秒前
无极微光应助白华苍松采纳,获得20
1分钟前
田様应助诚心的松柏采纳,获得10
1分钟前
Raunio完成签到,获得积分10
1分钟前
2分钟前
2分钟前
无极微光应助白华苍松采纳,获得20
2分钟前
2分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
Perry完成签到,获得积分0
2分钟前
2167418960完成签到,获得积分20
3分钟前
3分钟前
2167418960发布了新的文献求助10
3分钟前
打打应助2167418960采纳,获得10
3分钟前
星星亮应助白华苍松采纳,获得10
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
小丸子博士完成签到 ,获得积分10
5分钟前
章鱼小丸子完成签到 ,获得积分10
5分钟前
matrixu完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
breeze完成签到,获得积分10
7分钟前
无极微光应助白华苍松采纳,获得20
7分钟前
傅。发布了新的文献求助10
7分钟前
大胆的碧菡完成签到,获得积分10
7分钟前
zozox完成签到 ,获得积分10
8分钟前
科研通AI2S应助洗月采纳,获得30
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
9分钟前
9分钟前
9分钟前
Lucas应助白华苍松采纳,获得10
10分钟前
传奇3应助科研通管家采纳,获得10
10分钟前
我是老大应助科研通管家采纳,获得10
10分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515938
求助须知:如何正确求助?哪些是违规求助? 4609139
关于积分的说明 14514496
捐赠科研通 4545666
什么是DOI,文献DOI怎么找? 2490799
邀请新用户注册赠送积分活动 1472660
关于科研通互助平台的介绍 1444407