Detecting atrial fibrillation by deep convolutional neural networks

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 心房颤动 内科学 心脏病学 医学
作者
Yong Xia,Naren Wulan,Kuanquan Wang,Henggui Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:93: 84-92 被引量:315
标识
DOI:10.1016/j.compbiomed.2017.12.007
摘要

Abstract Background Atrial fibrillation (AF) is the most common cardiac arrhythmia. The incidence of AF increases with age, causing high risks of stroke and increased morbidity and mortality. Efficient and accurate diagnosis of AF based on the ECG is valuable in clinical settings and remains challenging. In this paper, we proposed a novel method with high reliability and accuracy for AF detection via deep learning. Method The short-term Fourier transform (STFT) and stationary wavelet transform (SWT) were used to analyze ECG segments to obtain two-dimensional (2-D) matrix input suitable for deep convolutional neural networks. Then, two different deep convolutional neural network models corresponding to STFT output and SWT output were developed. Our new method did not require detection of P or R peaks, nor feature designs for classification, in contrast to existing algorithms. Finally, the performances of the two models were evaluated and compared with those of existing algorithms. Results Our proposed method demonstrated favorable performances on ECG segments as short as 5 s. The deep convolutional neural network using input generated by STFT, presented a sensitivity of 98.34%, specificity of 98.24% and accuracy of 98.29%. For the deep convolutional neural network using input generated by SWT, a sensitivity of 98.79%, specificity of 97.87% and accuracy of 98.63% was achieved. Conclusion The proposed method using deep convolutional neural networks shows high sensitivity, specificity and accuracy, and, therefore, is a valuable tool for AF detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小孙发布了新的文献求助10
刚刚
1秒前
淡淡樱桃发布了新的文献求助10
4秒前
Peach完成签到,获得积分10
6秒前
西门戆戆发布了新的文献求助10
6秒前
12秒前
中和皇极应助zzbbzz采纳,获得10
14秒前
思源应助麦子采纳,获得10
15秒前
16秒前
yhl666发布了新的文献求助10
18秒前
杳鸢应助小孙采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
19秒前
19秒前
wanci应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
cdercder应助科研通管家采纳,获得30
19秒前
hhhblabla应助科研通管家采纳,获得20
19秒前
hhhblabla应助科研通管家采纳,获得20
19秒前
19秒前
丰知然应助科研通管家采纳,获得10
19秒前
丰知然应助科研通管家采纳,获得10
19秒前
ceeray23应助科研通管家采纳,获得10
19秒前
丰知然应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
20秒前
丰知然应助科研通管家采纳,获得10
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
丰知然应助科研通管家采纳,获得10
20秒前
ceeray23应助科研通管家采纳,获得10
20秒前
青黛发布了新的文献求助10
21秒前
22秒前
金牌小魚仔完成签到,获得积分10
25秒前
zzxp完成签到,获得积分10
26秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462689
求助须知:如何正确求助?哪些是违规求助? 3056214
关于积分的说明 9050947
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506601
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695693