苯并噻唑
密度泛函理论
化学
光化学
荧光
激发态
乙腈
吸收(声学)
吸收光谱法
计算化学
材料科学
有机化学
光学
原子物理学
物理
复合材料
作者
Felipe Lange Coelho,Cláudia de Ávila Braga,Gabriel M. Zanotto,Eduarda Sangiogo Gil,Leandra Franciscato Campo,Paulo Fernando Bruno Gonçalves,Fabiano Severo Rodembusch,Fabiano da Silveira Santos
标识
DOI:10.1016/j.snb.2017.12.097
摘要
2-Amino-6-substituted benzothiazoles were obtained by a one-pot reaction of different anilines with thiocyanogen and used to prepare the respective 2-phenylazo-6-substituted-benzothiazoles in good yields by the classical diazotization reaction followed by coupling with two N,N-dialkylanilines. The aminobenzothiazoles 2a–d present absorption in the UV region, although the azo dyes 4a–e present absorption maxima in the visible region. In the aminobenzothiazoles and the respective azo dyes, changes in the donor and acceptor character of the substituents affect the absorption maxima. All electronic transitions were fully spin- and symmetry-allowed, with 1π-π* character. The aminobenzothiazoles 2a–d do not show significant fluorescence emission, while the azo dyes 4a–e presented very low fluorescence emission in the green-orange region. The azo dyes present large changes in the absorption spectra with changing pH (blue to red colour), suggesting their use as optical sensors for low pH values. Theoretical calculations were also performed to study the charge distribution and photophysical properties of the azo dyes in their ground and excited states, utilizing Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TD-DFT). All calculations were carried out using PBE1PBE and ωB97XD functionals at the cc-pVDZ level for geometrical optimization, and at the jun-cc-pVTZ level for vertical transition energies and electronic property computations. Solvent effects were included by PCM formalism using acetonitrile and dichloromethane. Results were in good agreement with experimental data.
科研通智能强力驱动
Strongly Powered by AbleSci AI