Spatial autoregressive models for statistical inference from ecological data

自回归模型 平滑的 空间分析 自相关 推论 计算机科学 协变量 选型 统计 贝叶斯推理 贝叶斯概率 生态学 计量经济学 数学 人工智能 生物
作者
Jay M. Ver Hoef,Erin E. Peterson,Mevin B. Hooten,Ephraim M. Hanks,Marie-José Fortin
出处
期刊:Ecological Monographs [Wiley]
卷期号:88 (1): 36-59 被引量:132
标识
DOI:10.1002/ecm.1283
摘要

Abstract Ecological data often exhibit spatial pattern, which can be modeled as autocorrelation. Conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models are network‐based models (also known as graphical models) specifically designed to model spatially autocorrelated data based on neighborhood relationships. We identify and discuss six different types of practical ecological inference using CAR and SAR models, including: (1) model selection, (2) spatial regression, (3) estimation of autocorrelation, (4) estimation of other connectivity parameters, (5) spatial prediction, and (6) spatial smoothing. We compare CAR and SAR models, showing their development and connection to partial correlations. Special cases, such as the intrinsic autoregressive model (IAR), are described. Conditional autoregressive and SAR models depend on weight matrices, whose practical development uses neighborhood definition and row‐standardization. Weight matrices can also include ecological covariates and connectivity structures, which we emphasize, but have been rarely used. Trends in harbor seals ( Phoca vitulina ) in southeastern Alaska from 463 polygons, some with missing data, are used to illustrate the six inference types. We develop a variety of weight matrices and CAR and SAR spatial regression models are fit using maximum likelihood and Bayesian methods. Profile likelihood graphs illustrate inference for covariance parameters. The same data set is used for both prediction and smoothing, and the relative merits of each are discussed. We show the nonstationary variances and correlations of a CAR model and demonstrate the effect of row‐standardization. We include several take‐home messages for CAR and SAR models, including (1) choosing between CAR and IAR models, (2) modeling ecological effects in the covariance matrix, (3) the appeal of spatial smoothing, and (4) how to handle isolated neighbors. We highlight several reasons why ecologists will want to make use of autoregressive models, both directly and in hierarchical models, and not only in explicit spatial settings, but also for more general connectivity models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力学习的阿文完成签到 ,获得积分10
刚刚
1秒前
0526Test完成签到 ,获得积分10
1秒前
1秒前
1秒前
XiaoMing发布了新的文献求助10
1秒前
dylaner发布了新的文献求助10
2秒前
RosyBai完成签到,获得积分10
2秒前
Nick应助Wl0115采纳,获得10
2秒前
江峰发布了新的文献求助10
3秒前
3秒前
xjtuwang0618完成签到,获得积分10
3秒前
碧蓝烨霖发布了新的文献求助10
4秒前
5秒前
koko完成签到,获得积分10
7秒前
xiaofeizhu完成签到,获得积分10
9秒前
yuC发布了新的文献求助10
9秒前
研友_8oYMyn发布了新的文献求助10
10秒前
10秒前
santrue完成签到,获得积分10
11秒前
孤独的静枫完成签到,获得积分10
13秒前
荷兰香猪完成签到,获得积分10
14秒前
14秒前
15秒前
执着惜梦完成签到,获得积分10
15秒前
16秒前
王大壮完成签到,获得积分10
17秒前
彩色蓉完成签到,获得积分10
17秒前
现实的洋葱完成签到 ,获得积分10
19秒前
Akim应助薄荷之夏采纳,获得10
19秒前
麦克发布了新的文献求助10
19秒前
20秒前
请叫我风吹麦浪应助wzc采纳,获得30
20秒前
21秒前
vocuong发布了新的文献求助10
21秒前
NexusExplorer应助errui采纳,获得10
22秒前
22秒前
22秒前
年轻的茗茗完成签到,获得积分10
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976126
求助须知:如何正确求助?哪些是违规求助? 3520340
关于积分的说明 11202586
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877645
科研通“疑难数据库(出版商)”最低求助积分说明 806516