Spatial autoregressive models for statistical inference from ecological data

自回归模型 平滑的 空间分析 自相关 推论 计算机科学 协变量 选型 统计 贝叶斯推理 贝叶斯概率 生态学 计量经济学 数学 人工智能 生物
作者
Jay M. Ver Hoef,Erin E. Peterson,Mevin B. Hooten,Ephraim M. Hanks,Marie-José Fortin
出处
期刊:Ecological Monographs [Wiley]
卷期号:88 (1): 36-59 被引量:132
标识
DOI:10.1002/ecm.1283
摘要

Abstract Ecological data often exhibit spatial pattern, which can be modeled as autocorrelation. Conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models are network‐based models (also known as graphical models) specifically designed to model spatially autocorrelated data based on neighborhood relationships. We identify and discuss six different types of practical ecological inference using CAR and SAR models, including: (1) model selection, (2) spatial regression, (3) estimation of autocorrelation, (4) estimation of other connectivity parameters, (5) spatial prediction, and (6) spatial smoothing. We compare CAR and SAR models, showing their development and connection to partial correlations. Special cases, such as the intrinsic autoregressive model (IAR), are described. Conditional autoregressive and SAR models depend on weight matrices, whose practical development uses neighborhood definition and row‐standardization. Weight matrices can also include ecological covariates and connectivity structures, which we emphasize, but have been rarely used. Trends in harbor seals ( Phoca vitulina ) in southeastern Alaska from 463 polygons, some with missing data, are used to illustrate the six inference types. We develop a variety of weight matrices and CAR and SAR spatial regression models are fit using maximum likelihood and Bayesian methods. Profile likelihood graphs illustrate inference for covariance parameters. The same data set is used for both prediction and smoothing, and the relative merits of each are discussed. We show the nonstationary variances and correlations of a CAR model and demonstrate the effect of row‐standardization. We include several take‐home messages for CAR and SAR models, including (1) choosing between CAR and IAR models, (2) modeling ecological effects in the covariance matrix, (3) the appeal of spatial smoothing, and (4) how to handle isolated neighbors. We highlight several reasons why ecologists will want to make use of autoregressive models, both directly and in hierarchical models, and not only in explicit spatial settings, but also for more general connectivity models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到,获得积分10
1秒前
77关闭了77文献求助
1秒前
司空豁应助ardejiang采纳,获得10
2秒前
王定春完成签到,获得积分10
2秒前
在水一方应助伍六七采纳,获得10
2秒前
犹豫野狼发布了新的文献求助10
2秒前
bkagyin应助淡然水蜜桃采纳,获得20
3秒前
3秒前
4秒前
popvich应助冷酷傲易采纳,获得20
4秒前
思念需要什么完成签到,获得积分10
5秒前
脑洞疼应助yyj采纳,获得10
5秒前
5秒前
引子发布了新的文献求助10
5秒前
yangxiaomei完成签到,获得积分10
5秒前
5秒前
绝活中投完成签到,获得积分10
5秒前
5秒前
ZZZ完成签到,获得积分10
6秒前
6秒前
6秒前
开心的饼干完成签到,获得积分10
7秒前
7秒前
聪慧小霜应助伶俐的不尤采纳,获得10
7秒前
无名的喧嚣应助sxj采纳,获得30
7秒前
7秒前
青衫完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
纯真橘子发布了新的文献求助10
9秒前
zhy完成签到,获得积分10
10秒前
ccc发布了新的文献求助10
10秒前
科研通AI6应助博修采纳,获得10
10秒前
叶子完成签到,获得积分10
11秒前
上官若男应助ardejiang采纳,获得10
11秒前
时七完成签到 ,获得积分10
11秒前
专注追命完成签到,获得积分10
11秒前
李爱国应助蛋挞采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585299
求助须知:如何正确求助?哪些是违规求助? 4002043
关于积分的说明 12389019
捐赠科研通 3678147
什么是DOI,文献DOI怎么找? 2027106
邀请新用户注册赠送积分活动 1060652
科研通“疑难数据库(出版商)”最低求助积分说明 947170