已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial autoregressive models for statistical inference from ecological data

自回归模型 平滑的 空间分析 自相关 推论 计算机科学 协变量 选型 统计 贝叶斯推理 贝叶斯概率 生态学 计量经济学 数学 人工智能 生物
作者
Jay M. Ver Hoef,Erin E. Peterson,Mevin B. Hooten,Ephraim M. Hanks,Marie-José Fortin
出处
期刊:Ecological Monographs [Wiley]
卷期号:88 (1): 36-59 被引量:132
标识
DOI:10.1002/ecm.1283
摘要

Abstract Ecological data often exhibit spatial pattern, which can be modeled as autocorrelation. Conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models are network‐based models (also known as graphical models) specifically designed to model spatially autocorrelated data based on neighborhood relationships. We identify and discuss six different types of practical ecological inference using CAR and SAR models, including: (1) model selection, (2) spatial regression, (3) estimation of autocorrelation, (4) estimation of other connectivity parameters, (5) spatial prediction, and (6) spatial smoothing. We compare CAR and SAR models, showing their development and connection to partial correlations. Special cases, such as the intrinsic autoregressive model (IAR), are described. Conditional autoregressive and SAR models depend on weight matrices, whose practical development uses neighborhood definition and row‐standardization. Weight matrices can also include ecological covariates and connectivity structures, which we emphasize, but have been rarely used. Trends in harbor seals ( Phoca vitulina ) in southeastern Alaska from 463 polygons, some with missing data, are used to illustrate the six inference types. We develop a variety of weight matrices and CAR and SAR spatial regression models are fit using maximum likelihood and Bayesian methods. Profile likelihood graphs illustrate inference for covariance parameters. The same data set is used for both prediction and smoothing, and the relative merits of each are discussed. We show the nonstationary variances and correlations of a CAR model and demonstrate the effect of row‐standardization. We include several take‐home messages for CAR and SAR models, including (1) choosing between CAR and IAR models, (2) modeling ecological effects in the covariance matrix, (3) the appeal of spatial smoothing, and (4) how to handle isolated neighbors. We highlight several reasons why ecologists will want to make use of autoregressive models, both directly and in hierarchical models, and not only in explicit spatial settings, but also for more general connectivity models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rrrrrrry发布了新的文献求助10
2秒前
科研通AI2S应助LALA采纳,获得10
4秒前
传奇3应助思辰。采纳,获得10
5秒前
家欣完成签到,获得积分10
7秒前
可爱的函函应助李大白采纳,获得10
8秒前
胖胖的江鸟完成签到 ,获得积分10
8秒前
8秒前
乐乐应助Ykesl采纳,获得10
11秒前
火山应助Daniel采纳,获得30
12秒前
18秒前
22秒前
LALA发布了新的文献求助10
23秒前
古惑仔发布了新的文献求助30
24秒前
25秒前
坚强觅珍完成签到 ,获得积分10
26秒前
李大白完成签到,获得积分10
27秒前
27秒前
29秒前
MRD完成签到,获得积分10
31秒前
李大白发布了新的文献求助10
32秒前
LALA发布了新的文献求助10
34秒前
宣灵薇完成签到,获得积分0
34秒前
34秒前
35秒前
36秒前
月亮很亮完成签到,获得积分10
37秒前
冷傲曼冬发布了新的文献求助10
39秒前
13656479046发布了新的文献求助10
40秒前
rrrrrrry发布了新的文献求助20
41秒前
orixero应助尘曦采纳,获得10
41秒前
sadh2完成签到 ,获得积分10
41秒前
月亮很亮发布了新的文献求助10
43秒前
47秒前
嘿嘿应助南风知哀意采纳,获得10
47秒前
48秒前
rrrrrrry发布了新的文献求助10
52秒前
荔枝发布了新的文献求助10
53秒前
54秒前
54秒前
阔口阔落完成签到,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595590
求助须知:如何正确求助?哪些是违规求助? 4680876
关于积分的说明 14817799
捐赠科研通 4650797
什么是DOI,文献DOI怎么找? 2535516
邀请新用户注册赠送积分活动 1503487
关于科研通互助平台的介绍 1469726