Spatial autoregressive models for statistical inference from ecological data

自回归模型 平滑的 空间分析 自相关 推论 计算机科学 协变量 选型 统计 贝叶斯推理 贝叶斯概率 生态学 计量经济学 数学 人工智能 生物
作者
Jay M. Ver Hoef,Erin E. Peterson,Mevin B. Hooten,Ephraim M. Hanks,Marie-José Fortin
出处
期刊:Ecological Monographs [Wiley]
卷期号:88 (1): 36-59 被引量:132
标识
DOI:10.1002/ecm.1283
摘要

Abstract Ecological data often exhibit spatial pattern, which can be modeled as autocorrelation. Conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models are network‐based models (also known as graphical models) specifically designed to model spatially autocorrelated data based on neighborhood relationships. We identify and discuss six different types of practical ecological inference using CAR and SAR models, including: (1) model selection, (2) spatial regression, (3) estimation of autocorrelation, (4) estimation of other connectivity parameters, (5) spatial prediction, and (6) spatial smoothing. We compare CAR and SAR models, showing their development and connection to partial correlations. Special cases, such as the intrinsic autoregressive model (IAR), are described. Conditional autoregressive and SAR models depend on weight matrices, whose practical development uses neighborhood definition and row‐standardization. Weight matrices can also include ecological covariates and connectivity structures, which we emphasize, but have been rarely used. Trends in harbor seals ( Phoca vitulina ) in southeastern Alaska from 463 polygons, some with missing data, are used to illustrate the six inference types. We develop a variety of weight matrices and CAR and SAR spatial regression models are fit using maximum likelihood and Bayesian methods. Profile likelihood graphs illustrate inference for covariance parameters. The same data set is used for both prediction and smoothing, and the relative merits of each are discussed. We show the nonstationary variances and correlations of a CAR model and demonstrate the effect of row‐standardization. We include several take‐home messages for CAR and SAR models, including (1) choosing between CAR and IAR models, (2) modeling ecological effects in the covariance matrix, (3) the appeal of spatial smoothing, and (4) how to handle isolated neighbors. We highlight several reasons why ecologists will want to make use of autoregressive models, both directly and in hierarchical models, and not only in explicit spatial settings, but also for more general connectivity models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
1秒前
2秒前
rstorz完成签到,获得积分10
2秒前
wzxxxx发布了新的文献求助10
3秒前
方方方方神完成签到,获得积分20
3秒前
WiLDPiG433完成签到,获得积分10
3秒前
4秒前
Jasper应助椰子采纳,获得10
4秒前
Stormi发布了新的文献求助10
4秒前
jym发布了新的文献求助10
4秒前
4秒前
Maigret完成签到,获得积分10
5秒前
两飞飞完成签到,获得积分10
5秒前
5秒前
韭菜盒子发布了新的文献求助10
6秒前
ximu完成签到,获得积分20
6秒前
CLN完成签到,获得积分10
6秒前
SciGPT应助单薄凌蝶采纳,获得50
7秒前
7秒前
111完成签到,获得积分10
7秒前
小马甲应助117采纳,获得10
7秒前
甜甜的猫咪完成签到,获得积分10
7秒前
7秒前
66应助马佳凯采纳,获得10
7秒前
8秒前
是述不是沭完成签到,获得积分10
8秒前
9秒前
lei完成签到,获得积分10
9秒前
瘦瘦的背包完成签到,获得积分10
10秒前
10秒前
赘婿应助Elaine采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
科研小白完成签到,获得积分10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
11秒前
11秒前
思源应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得50
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740