A Bayesian Network model for predicting cooling load of commercial buildings

人工神经网络 冷负荷 贝叶斯概率 过程(计算) 支持向量机 贝叶斯网络 机器学习 计算机科学 数据挖掘 人工智能 工程类 机械工程 空调 操作系统
作者
Sen Huang,Wangda Zuo,Michael D. Sohn
出处
期刊:Building Simulation [Springer Nature]
卷期号:11 (1): 87-101 被引量:19
标识
DOI:10.1007/s12273-017-0382-z
摘要

Cooling load prediction is indispensable to many building energy saving strategies. In this paper, we proposed a new method for predicting the cooling load of commercial buildings. The proposed approach employs a Bayesian Network model to relate the cooling load to outdoor weather conditions and internal building activities. The proposed method is computationally efficient and implementable for use in real buildings, as it does not involve sophisticated mathematical theories. In this paper, we described the proposed method and demonstrated its use via a case study. In this case study, we considered three candidate models for cooling load prediction and they are the proposed Bayesian Network model, a Support Vector Machine model, and an Artificial Neural Network model. We trained the three models with fourteen different training data datasets, each of which had varying amounts and quality of data that were sampled on-site. The prediction results for a testing week shows that the Bayesian Network model achieves similar accuracy as the Support Vector Machine model but better accuracy than the Artificial Neural Network model. Notable in this comparison is that the training process of the Bayesian Network model is fifty-eight times faster than that of the Artificial Neural Network model. The results also suggest that all three models will have much larger prediction deviations if the testing data points are not covered by the training dataset for the studied case (The maximum absolute deviation of the predictions that are not covered by the training dataset can be up to seven times larger than that of the predictions covered by the training dataset). In addition, we also found the uncertainties in the weather forecast significantly affected the accuracy of the cooling load prediction for the studied case and the Support Vector Machine model was more sensitive to those uncertainties than the other two models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暗中讨饭发布了新的文献求助10
刚刚
星辰大海应助马小妮采纳,获得10
1秒前
贰卷发布了新的文献求助10
2秒前
Owen应助静香采纳,获得10
2秒前
dingxiaosong完成签到,获得积分10
4秒前
高强发布了新的文献求助10
4秒前
4秒前
5秒前
科目三应助祁青采纳,获得30
5秒前
香蕉觅云应助夜之枫采纳,获得10
6秒前
李健应助husaheng采纳,获得10
6秒前
najibveto应助Okpooko采纳,获得10
7秒前
7秒前
dandan完成签到,获得积分10
8秒前
8秒前
寒烟完成签到,获得积分10
8秒前
跳跃鱼发布了新的文献求助10
9秒前
10秒前
寒烟发布了新的文献求助10
12秒前
12秒前
13秒前
演员发布了新的文献求助10
14秒前
静香发布了新的文献求助10
14秒前
15秒前
yipyip发布了新的文献求助20
15秒前
ind-chem举报愉快的小鸽子求助涉嫌违规
16秒前
丁丁完成签到,获得积分10
17秒前
lplmid发布了新的文献求助10
17秒前
18秒前
开心便当发布了新的文献求助10
18秒前
安心完成签到,获得积分10
19秒前
19秒前
上官若男应助Yana1311采纳,获得10
19秒前
20秒前
科研通AI2S应助Abdurrahman采纳,获得10
22秒前
李老头发布了新的文献求助10
23秒前
cloud发布了新的文献求助10
23秒前
今后应助光光光光头采纳,获得10
24秒前
脑洞疼应助zhaoshao采纳,获得10
25秒前
25秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3093589
求助须知:如何正确求助?哪些是违规求助? 2745564
关于积分的说明 7586157
捐赠科研通 2396871
什么是DOI,文献DOI怎么找? 1271459
科研通“疑难数据库(出版商)”最低求助积分说明 615172
版权声明 598844