Analysis on speech signal features of manic patients

狂躁 共振峰 双相情感障碍 心理学 心情 听力学 评定量表 临床心理学 医学 发展心理学 语音识别 计算机科学 元音
作者
Jing Zhang,Zhongde Pan,Chao Gui,Ting Xue,Yezhe Lin,Jie Zhu,Donghong Cui
出处
期刊:Journal of Psychiatric Research [Elsevier]
卷期号:98: 59-63 被引量:27
标识
DOI:10.1016/j.jpsychires.2017.12.012
摘要

Given the lack of effective biological markers for early diagnosis of bipolar mania, and the tendency for voice fluctuation during transition between mood states, this study aimed to investigate the speech features of manic patients to identify a potential set of biomarkers for diagnosis of bipolar mania. 30 manic patients and 30 healthy controls were recruited and their corresponding speech features were collected during natural dialogue using the Automatic Voice Collecting System. Bech-Rafaelsdn Mania Rating Scale (BRMS) and Clinical impression rating scale (CGI) were used to assess illness. The speech features were compared between two groups: mood group (mania vs remission) and bipolar group (manic patients vs healthy individuals). We found that the characteristic speech signals differed between mood groups and bipolar groups. The fourth formant (F4) and Linear Prediction Coefficient (LPC) (P < .05) were significantly differed when patients transmitted from manic to remission state. The first formant (F1), the second formant (F2), and LPC (P < .05) also played key roles in distinguishing between patients and healthy individuals. In addition, there was a significantly correlation between LPC and BRMS, indicating that LPC may play an important role in diagnosis of bipolar mania. In this study we traced speech features of bipolar mania during natural dialogue (conversation), which is an accessible approach in clinic practice. Such specific indicators may respectively serve as promising biomarkers for benefiting the diagnosis and clinical therapeutic evaluation of bipolar mania.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjiang发布了新的文献求助50
1秒前
2秒前
饱满的路灯完成签到,获得积分10
3秒前
111完成签到 ,获得积分10
3秒前
3秒前
4秒前
skyer1发布了新的文献求助10
4秒前
晓阳发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
脑洞疼应助包容的人生采纳,获得10
8秒前
ZhangDibaiyu完成签到,获得积分10
8秒前
常常完成签到,获得积分10
10秒前
en发布了新的文献求助10
10秒前
v啦啦啦啦完成签到 ,获得积分10
10秒前
sanmu应助好困采纳,获得50
11秒前
11秒前
鳗鱼雪莲完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
眼睛大问梅关注了科研通微信公众号
15秒前
英姑应助蜗牛采纳,获得10
15秒前
17秒前
大模型应助辛普森采纳,获得10
17秒前
OnionJJ应助花痴的易真采纳,获得10
18秒前
车车关注了科研通微信公众号
19秒前
小瓶子完成签到,获得积分10
19秒前
20秒前
21秒前
ccalvintan完成签到,获得积分10
21秒前
22秒前
23秒前
ding应助Light采纳,获得30
23秒前
23秒前
脑洞疼应助香蕉绿草采纳,获得10
24秒前
26秒前
星星草发布了新的文献求助10
27秒前
嘒彼小星完成签到 ,获得积分10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159611
求助须知:如何正确求助?哪些是违规求助? 2810617
关于积分的说明 7888779
捐赠科研通 2469621
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012