Narrow-band red-emitting phosphor, Gd 3 Zn 2 Nb 3 O 14 :Eu 3+ with high color purity for phosphor-converted white light emitting diodes

荧光粉 色度 发光 发光二极管 电偶极子跃迁 离子 红色 分析化学(期刊) 化学 发射光谱 材料科学 光电子学 光学 偶极子 谱线 物理 磁偶极子 有机化学 色谱法 天文
作者
T. S. Sreena,P. Prabhakar Rao,Athira K. V. Raj,T. R. Aju Thara
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:751: 148-158 被引量:77
标识
DOI:10.1016/j.jallcom.2018.04.135
摘要

In this work, we synthesized and characterized a narrow band red emitting Gd3Zn2Nb3O14:Eu3+ phosphor in order to improve the color qualities of warm white light emitting diodes. The phosphors were synthesized via conventional solid state reaction method and investigated the evolution of emission spectra with partial occupation of Zn2+ ions on both A and B site of the fergusonite type structure. The structural and luminescence property analysis corroborates the occupancy of Eu3+ ions in the Gd3+/Zn2+ ion site (A site). The developed phosphor exhibits a strong red emission peaking at 613 nm with a fwhm of merely ∼3.50 nm under the 392 nm excitation. These compounds produce narrow emissions in the visible red spectral regions that are highly professed by human eye and lead to outstanding chromatic saturation of the red spectra. The enhanced electric dipole transition intensity arises from the symmetry distortion of Eu3+ ions caused by the introduction of Zn2+ ions in the lattice. The distortion of the A site symmetry and the red shift of the charge transfer energy leads to an intense 5D0 – 7F2 hypersensitive electric dipole transition under 392 nm excitation. The relative emission intensity was found to be maximum at x = 0.40 and is 3.9 times higher than that of the commercial red phosphor under the 392 nm excitation. These phosphors with remarkable CIE chromaticity coordinates (0.64, 0.35), good CCT values along with high color purity (94.2%) might have significant applications in display devices and evidence as an efficient red phosphor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是述不是沭完成签到,获得积分10
刚刚
1秒前
lei完成签到,获得积分10
1秒前
瘦瘦的背包完成签到,获得积分10
2秒前
2秒前
赘婿应助Elaine采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
科研小白完成签到,获得积分10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得50
3秒前
CodeCraft应助科研通管家采纳,获得30
3秒前
控制小弟应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
彭于晏完成签到,获得积分10
4秒前
勤劳元瑶完成签到,获得积分10
4秒前
whatever举报muzi求助涉嫌违规
5秒前
小白发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
搬砖工完成签到,获得积分10
6秒前
Lucas应助圈圈采纳,获得10
7秒前
NexusExplorer应助韭菜盒子采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740