Strain engineering on transmission carriers of monolayer phosphorene

磷烯 之字形的 单层 有效质量(弹簧-质量系统) 材料科学 凝聚态物理 带隙 半导体 拉伤 光电子学 纳米技术 物理 几何学 内科学 医学 量子力学 数学
作者
Wei Zhang,Feng Li,Junsong Hu,Ping Zhang,Jiuren Yin,Xianqiong Tang,Yong Jiang,Bozhao Wu,Yanhuai Ding
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
卷期号:29 (46): 465501-465501 被引量:5
标识
DOI:10.1088/1361-648x/aa8e7e
摘要

The effects of uniaxial strain on the structure, band gap and transmission carriers of monolayer phosphorene were investigated by first-principles calculations. The strain induced semiconductor-metal as well as direct–indirect transitions were studied in monolayer phosphorene. The position of CBM which belonged to indirect gap shifts along the direction of the applied strain. We have concluded the change rules of the carrier effective mass when plane strains are applied. In band structure, the sudden decrease of band gap or the new formation of CBM (VBM) causes the unexpected change in carrier effective mass. The effects of zigzag and armchair strain on the effective electron mass in phosphorene are different. The strain along zigzag direction has effects on the electrons effective mass along both zigzag and armchair direction. By contrast, armchair-direction strain seems to affect only on the free electron mass along zigzag direction. For the holes, the effective masses along zigzag direction are largely affected by plane strains while the effective mass along armchair direction exhibits independence in strain processing. The carrier density of monolayer phosphorene at 300 K is calculated about cm−2, which is greatly influenced by the temperature and strain. Strain engineering is an efficient method to improve the carrier density in phosphorene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助淡淡采白采纳,获得10
1秒前
高高代珊完成签到 ,获得积分10
2秒前
gmc发布了新的文献求助10
3秒前
3秒前
4秒前
善学以致用应助Mian采纳,获得10
4秒前
学科共进发布了新的文献求助60
5秒前
LWJ完成签到 ,获得积分10
5秒前
5秒前
缓慢的糖豆完成签到,获得积分10
6秒前
阉太狼完成签到,获得积分10
6秒前
7秒前
soory完成签到,获得积分10
8秒前
任性的傲柏完成签到,获得积分10
8秒前
lwk205完成签到,获得积分0
8秒前
9秒前
一一完成签到,获得积分10
9秒前
9秒前
9秒前
高中生完成签到,获得积分10
10秒前
10秒前
10秒前
希望天下0贩的0应助TT采纳,获得10
11秒前
xxegt完成签到 ,获得积分10
11秒前
12秒前
爱吃泡芙发布了新的文献求助10
12秒前
susu完成签到,获得积分10
14秒前
会神发布了新的文献求助10
14秒前
KK完成签到,获得积分10
15秒前
充电宝应助justin采纳,获得10
17秒前
18秒前
Ch完成签到 ,获得积分10
19秒前
21秒前
ajun完成签到,获得积分10
21秒前
21秒前
春江完成签到,获得积分10
21秒前
21秒前
漂亮的松思完成签到,获得积分20
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808