已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Edge Attention-based Multi-Relational Graph Convolutional Networks

邻接矩阵 计算机科学 分子图 二进制数 图形 卷积神经网络 折线图 理论计算机科学 人工智能 数学 算术
作者
Chao Shang,Qinqing Liu,Ko‐Shin Chen,Jiangwen Sun,Jin Lü,Jinfeng Yi,Jinbo Bi
出处
期刊:Cornell University - arXiv 被引量:53
标识
DOI:10.48550/arxiv.1802.04944
摘要

Graph convolutional network (GCN) is generalization of convolutional neural network (CNN) to work with arbitrarily structured graphs. A binary adjacency matrix is commonly used in training a GCN. Recently, the attention mechanism allows the network to learn a dynamic and adaptive aggregation of the neighborhood. We propose a new GCN model on the graphs where edges are characterized in multiple views or precisely in terms of multiple relationships. For instance, in chemical graph theory, compound structures are often represented by the hydrogen-depleted molecular graph where nodes correspond to atoms and edges correspond to chemical bonds. Multiple attributes can be important to characterize chemical bonds, such as atom pair (the types of atoms that a bond connects), aromaticity, and whether a bond is in a ring. The different attributes lead to different graph representations for the same molecule. There is growing interests in both chemistry and machine learning fields to directly learn molecular properties of compounds from the molecular graph, instead of from fingerprints predefined by chemists. The proposed GCN model, which we call edge attention-based multi-relational GCN (EAGCN), jointly learns attention weights and node features in graph convolution. For each bond attribute, a real-valued attention matrix is used to replace the binary adjacency matrix. By designing a dictionary for the edge attention, and forming the attention matrix of each molecule by looking up the dictionary, the EAGCN exploits correspondence between bonds in different molecules. The prediction of compound properties is based on the aggregated node features, which is independent of the varying molecule (graph) size. We demonstrate the efficacy of the EAGCN on multiple chemical datasets: Tox21, HIV, Freesolv, and Lipophilicity, and interpret the resultant attention weights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
smj发布了新的文献求助10
1秒前
研友_nV2ROn完成签到,获得积分10
5秒前
亦屿森发布了新的文献求助10
6秒前
orixero应助咸鱼爱喝汤采纳,获得10
6秒前
wen完成签到 ,获得积分10
7秒前
快乐咸鱼完成签到 ,获得积分10
7秒前
smj完成签到,获得积分10
8秒前
10秒前
13秒前
学术废物完成签到 ,获得积分10
15秒前
能干涵瑶完成签到,获得积分10
15秒前
16秒前
完美世界应助干净溪流采纳,获得10
16秒前
小米发布了新的文献求助10
16秒前
医痞子完成签到,获得积分10
19秒前
炒栗子发布了新的文献求助10
20秒前
脑洞疼应助liweiDr采纳,获得10
22秒前
26秒前
爱吃蛋挞发布了新的文献求助20
28秒前
CLL完成签到,获得积分20
28秒前
30秒前
竹外桃花发布了新的文献求助20
30秒前
30秒前
颜林林完成签到,获得积分10
32秒前
炒栗子发布了新的文献求助10
32秒前
qdysci完成签到 ,获得积分10
32秒前
34秒前
kemin_jin发布了新的文献求助10
37秒前
LawShu完成签到 ,获得积分10
38秒前
39秒前
香蕉觅云应助dalin采纳,获得10
40秒前
41秒前
liweiDr发布了新的文献求助10
44秒前
Akim应助丙泊酚采纳,获得10
45秒前
charm完成签到 ,获得积分10
47秒前
小粒橙完成签到 ,获得积分10
48秒前
叶子发布了新的文献求助10
54秒前
拥有八根情丝完成签到 ,获得积分10
57秒前
57秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139336
求助须知:如何正确求助?哪些是违规求助? 2790244
关于积分的说明 7794607
捐赠科研通 2446679
什么是DOI,文献DOI怎么找? 1301314
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109