清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Edge Attention-based Multi-Relational Graph Convolutional Networks

邻接矩阵 计算机科学 分子图 二进制数 图形 卷积神经网络 折线图 理论计算机科学 人工智能 数学 算术
作者
Chao Shang,Qinqing Liu,Ko‐Shin Chen,Jiangwen Sun,Jin Lü,Jinfeng Yi,Jinbo Bi
出处
期刊:Cornell University - arXiv 被引量:53
标识
DOI:10.48550/arxiv.1802.04944
摘要

Graph convolutional network (GCN) is generalization of convolutional neural network (CNN) to work with arbitrarily structured graphs. A binary adjacency matrix is commonly used in training a GCN. Recently, the attention mechanism allows the network to learn a dynamic and adaptive aggregation of the neighborhood. We propose a new GCN model on the graphs where edges are characterized in multiple views or precisely in terms of multiple relationships. For instance, in chemical graph theory, compound structures are often represented by the hydrogen-depleted molecular graph where nodes correspond to atoms and edges correspond to chemical bonds. Multiple attributes can be important to characterize chemical bonds, such as atom pair (the types of atoms that a bond connects), aromaticity, and whether a bond is in a ring. The different attributes lead to different graph representations for the same molecule. There is growing interests in both chemistry and machine learning fields to directly learn molecular properties of compounds from the molecular graph, instead of from fingerprints predefined by chemists. The proposed GCN model, which we call edge attention-based multi-relational GCN (EAGCN), jointly learns attention weights and node features in graph convolution. For each bond attribute, a real-valued attention matrix is used to replace the binary adjacency matrix. By designing a dictionary for the edge attention, and forming the attention matrix of each molecule by looking up the dictionary, the EAGCN exploits correspondence between bonds in different molecules. The prediction of compound properties is based on the aggregated node features, which is independent of the varying molecule (graph) size. We demonstrate the efficacy of the EAGCN on multiple chemical datasets: Tox21, HIV, Freesolv, and Lipophilicity, and interpret the resultant attention weights.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沿途有你完成签到 ,获得积分10
3秒前
传奇3应助ganggang采纳,获得10
44秒前
1分钟前
Jason发布了新的文献求助10
1分钟前
珍珠完成签到 ,获得积分10
1分钟前
涛1完成签到 ,获得积分10
1分钟前
1分钟前
汉堡包应助xuan采纳,获得10
2分钟前
space完成签到,获得积分10
2分钟前
2分钟前
xuan发布了新的文献求助10
2分钟前
所所应助胖虎采纳,获得10
2分钟前
小鱼发布了新的文献求助10
2分钟前
没时间解释了完成签到 ,获得积分10
2分钟前
cc完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
ganggang发布了新的文献求助10
3分钟前
缥缈的觅风完成签到 ,获得积分10
3分钟前
希望天下0贩的0应助willa采纳,获得10
3分钟前
三岁发布了新的文献求助10
3分钟前
三岁完成签到,获得积分20
4分钟前
4分钟前
任性翠安完成签到 ,获得积分10
4分钟前
4分钟前
Yolanda完成签到 ,获得积分10
5分钟前
ding应助ganggang采纳,获得10
5分钟前
yihanghh完成签到 ,获得积分10
6分钟前
cy0824完成签到 ,获得积分10
6分钟前
6分钟前
ganggang发布了新的文献求助10
6分钟前
7分钟前
Jason完成签到,获得积分10
7分钟前
Jason发布了新的文献求助10
7分钟前
woxinyouyou完成签到,获得积分0
7分钟前
lucky完成签到 ,获得积分10
8分钟前
知了完成签到 ,获得积分10
8分钟前
SciGPT应助hongping采纳,获得10
8分钟前
8分钟前
hongping发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568283
求助须知:如何正确求助?哪些是违规求助? 4652789
关于积分的说明 14702004
捐赠科研通 4594614
什么是DOI,文献DOI怎么找? 2521112
邀请新用户注册赠送积分活动 1492900
关于科研通互助平台的介绍 1463715