Edge Attention-based Multi-Relational Graph Convolutional Networks

邻接矩阵 计算机科学 分子图 二进制数 图形 卷积神经网络 折线图 理论计算机科学 人工智能 数学 算术
作者
Chao Shang,Qinqing Liu,Ko‐Shin Chen,Jiangwen Sun,Jin Lü,Jinfeng Yi,Jinbo Bi
出处
期刊:Cornell University - arXiv 被引量:53
标识
DOI:10.48550/arxiv.1802.04944
摘要

Graph convolutional network (GCN) is generalization of convolutional neural network (CNN) to work with arbitrarily structured graphs. A binary adjacency matrix is commonly used in training a GCN. Recently, the attention mechanism allows the network to learn a dynamic and adaptive aggregation of the neighborhood. We propose a new GCN model on the graphs where edges are characterized in multiple views or precisely in terms of multiple relationships. For instance, in chemical graph theory, compound structures are often represented by the hydrogen-depleted molecular graph where nodes correspond to atoms and edges correspond to chemical bonds. Multiple attributes can be important to characterize chemical bonds, such as atom pair (the types of atoms that a bond connects), aromaticity, and whether a bond is in a ring. The different attributes lead to different graph representations for the same molecule. There is growing interests in both chemistry and machine learning fields to directly learn molecular properties of compounds from the molecular graph, instead of from fingerprints predefined by chemists. The proposed GCN model, which we call edge attention-based multi-relational GCN (EAGCN), jointly learns attention weights and node features in graph convolution. For each bond attribute, a real-valued attention matrix is used to replace the binary adjacency matrix. By designing a dictionary for the edge attention, and forming the attention matrix of each molecule by looking up the dictionary, the EAGCN exploits correspondence between bonds in different molecules. The prediction of compound properties is based on the aggregated node features, which is independent of the varying molecule (graph) size. We demonstrate the efficacy of the EAGCN on multiple chemical datasets: Tox21, HIV, Freesolv, and Lipophilicity, and interpret the resultant attention weights.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李健应助细胞不凋王女士采纳,获得10
1秒前
CodeCraft应助可爱绮采纳,获得10
2秒前
聂落雁完成签到,获得积分10
2秒前
xzs完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
生动曼冬发布了新的文献求助10
3秒前
4秒前
Lucas应助大意的语琴采纳,获得10
4秒前
4秒前
4秒前
跳跳糖发布了新的文献求助10
5秒前
5秒前
包凡之发布了新的文献求助10
5秒前
天空发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
安静无招发布了新的文献求助10
6秒前
7秒前
自由保温杯应助ljljljlj采纳,获得50
7秒前
7秒前
汉堡包应助烤地瓜采纳,获得10
8秒前
QIQI发布了新的文献求助10
8秒前
姜姜完成签到,获得积分10
8秒前
活力广缘完成签到,获得积分10
8秒前
无花果应助阮楷瑞采纳,获得10
8秒前
8秒前
王逸发布了新的文献求助10
9秒前
kkkk发布了新的文献求助10
9秒前
LI完成签到,获得积分10
9秒前
lsz发布了新的文献求助10
9秒前
10秒前
arniu2008发布了新的文献求助10
10秒前
温暖南莲完成签到,获得积分10
10秒前
10秒前
FashionBoy应助lilianan采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576558
求助须知:如何正确求助?哪些是违规求助? 4661927
关于积分的说明 14738788
捐赠科研通 4602503
什么是DOI,文献DOI怎么找? 2525869
邀请新用户注册赠送积分活动 1495750
关于科研通互助平台的介绍 1465414