Significantly Fast and Robust Fuzzy C-Means Clustering Algorithm Based on Morphological Reconstruction and Membership Filtering

聚类分析 图像分割 像素 稳健性(进化) 人工智能 模式识别(心理学) 模糊聚类 算法 计算机科学 空间分析 数学 分割 生物化学 基因 统计 化学
作者
Tao Lei,Xiaohong Jia,Yanning Zhang,Lifeng He,Hongying Meng,Asoke K. Nandi
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:26 (5): 3027-3041 被引量:399
标识
DOI:10.1109/tfuzz.2018.2796074
摘要

As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the robustness of the FCM algorithm for image segmentation. However, the introduction of local spatial information often leads to a high computational complexity, arising out of an iterative calculation of the distance between pixels within local spatial neighbors and clustering centers. To address this issue, an improved FCM algorithm based on morphological reconstruction and membership filtering (FRFCM) that is significantly faster and more robust than FCM is proposed in this paper. First, the local spatial information of images is incorporated into FRFCM by introducing morphological reconstruction operation to guarantee noise-immunity and image detail-preservation. Second, the modification of membership partition, based on the distance between pixels within local spatial neighbors and clustering centers, is replaced by local membership filtering that depends only on the spatial neighbors of membership partition. Compared with state-of-the-art algorithms, the proposed FRFCM algorithm is simpler and significantly faster, since it is unnecessary to compute the distance between pixels within local spatial neighbors and clustering centers. In addition, it is efficient for noisy image segmentation because membership filtering are able to improve membership partition matrix efficiently. Experiments performed on synthetic and real-world images demonstrate that the proposed algorithm not only achieves better results, but also requires less time than the state-of-the-art algorithms for image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
枪王阿绣发布了新的文献求助30
2秒前
小二郎应助西子阳采纳,获得10
3秒前
3秒前
汉堡包应助淡淡的忧伤采纳,获得10
4秒前
芭娜55完成签到 ,获得积分10
5秒前
小盼虫发布了新的文献求助10
5秒前
田様应助yuhangli采纳,获得10
6秒前
小马甲应助alansk采纳,获得10
6秒前
福宝完成签到,获得积分10
6秒前
8秒前
9秒前
10秒前
LCM666完成签到,获得积分10
11秒前
yuaasusanaann发布了新的文献求助10
11秒前
yjj6809完成签到,获得积分10
11秒前
武雨寒发布了新的文献求助10
12秒前
13秒前
朱朱完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
华仔应助追风采纳,获得10
17秒前
脑洞疼应助超级觅风采纳,获得10
19秒前
夏来应助星期三不调闹钟采纳,获得10
19秒前
淡淡的忧伤完成签到,获得积分10
19秒前
20秒前
Alioth完成签到 ,获得积分20
20秒前
yuhangli发布了新的文献求助10
20秒前
Zzzoey发布了新的文献求助10
20秒前
21秒前
桃子应助西子阳采纳,获得10
21秒前
SSY完成签到,获得积分20
22秒前
tyh完成签到,获得积分10
23秒前
善学以致用应助dian采纳,获得10
24秒前
yuhangli完成签到,获得积分10
26秒前
接q辣舞发布了新的文献求助10
27秒前
27秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999530
求助须知:如何正确求助?哪些是违规求助? 3538968
关于积分的说明 11275514
捐赠科研通 3277819
什么是DOI,文献DOI怎么找? 1807686
邀请新用户注册赠送积分活动 884100
科研通“疑难数据库(出版商)”最低求助积分说明 810138