Significantly Fast and Robust Fuzzy C-Means Clustering Algorithm Based on Morphological Reconstruction and Membership Filtering

聚类分析 图像分割 像素 稳健性(进化) 人工智能 模式识别(心理学) 模糊聚类 算法 计算机科学 空间分析 模糊逻辑 数学 分割 统计 基因 生物化学 化学
作者
Tao Lei,Xiaohong Jia,Yanning Zhang,Lifeng He,Hongying Meng,Asoke K. Nandi
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:26 (5): 3027-3041 被引量:452
标识
DOI:10.1109/tfuzz.2018.2796074
摘要

As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the robustness of the FCM algorithm for image segmentation. However, the introduction of local spatial information often leads to a high computational complexity, arising out of an iterative calculation of the distance between pixels within local spatial neighbors and clustering centers. To address this issue, an improved FCM algorithm based on morphological reconstruction and membership filtering (FRFCM) that is significantly faster and more robust than FCM is proposed in this paper. First, the local spatial information of images is incorporated into FRFCM by introducing morphological reconstruction operation to guarantee noise-immunity and image detail-preservation. Second, the modification of membership partition, based on the distance between pixels within local spatial neighbors and clustering centers, is replaced by local membership filtering that depends only on the spatial neighbors of membership partition. Compared with state-of-the-art algorithms, the proposed FRFCM algorithm is simpler and significantly faster, since it is unnecessary to compute the distance between pixels within local spatial neighbors and clustering centers. In addition, it is efficient for noisy image segmentation because membership filtering are able to improve membership partition matrix efficiently. Experiments performed on synthetic and real-world images demonstrate that the proposed algorithm not only achieves better results, but also requires less time than the state-of-the-art algorithms for image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不知发布了新的文献求助10
刚刚
刚刚
写个锤子完成签到,获得积分10
1秒前
betty完成签到,获得积分10
3秒前
风中小蕊发布了新的文献求助10
4秒前
4秒前
4秒前
51区发布了新的文献求助10
5秒前
5秒前
一个球一个蛋儿完成签到,获得积分10
5秒前
7秒前
搞怪的千秋完成签到,获得积分10
7秒前
miaomiao完成签到,获得积分10
8秒前
彭于晏应助754采纳,获得10
9秒前
Yangon发布了新的文献求助10
14秒前
小呆子发布了新的文献求助10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
shell完成签到,获得积分10
15秒前
金汐完成签到,获得积分10
16秒前
布里田完成签到 ,获得积分10
16秒前
yh完成签到,获得积分10
17秒前
yy关闭了yy文献求助
18秒前
科研通AI6.1应助娜娜采纳,获得10
18秒前
无花果应助乐邦采纳,获得10
18秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
Sicily发布了新的文献求助10
20秒前
清修完成签到,获得积分10
20秒前
李健应助Yangon采纳,获得10
21秒前
拉哈80应助痴情的香魔采纳,获得20
22秒前
22秒前
Muncy完成签到 ,获得积分10
24秒前
26秒前
星辰大海应助小呆子采纳,获得10
26秒前
心灵美鑫完成签到 ,获得积分10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060