已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Significantly Fast and Robust Fuzzy C-Means Clustering Algorithm Based on Morphological Reconstruction and Membership Filtering

聚类分析 图像分割 像素 稳健性(进化) 人工智能 模式识别(心理学) 模糊聚类 算法 计算机科学 空间分析 数学 分割 生物化学 基因 统计 化学
作者
Tao Lei,Xiaohong Jia,Yanning Zhang,Lifeng He,Hongying Meng,Asoke K. Nandi
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:26 (5): 3027-3041 被引量:399
标识
DOI:10.1109/tfuzz.2018.2796074
摘要

As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the robustness of the FCM algorithm for image segmentation. However, the introduction of local spatial information often leads to a high computational complexity, arising out of an iterative calculation of the distance between pixels within local spatial neighbors and clustering centers. To address this issue, an improved FCM algorithm based on morphological reconstruction and membership filtering (FRFCM) that is significantly faster and more robust than FCM is proposed in this paper. First, the local spatial information of images is incorporated into FRFCM by introducing morphological reconstruction operation to guarantee noise-immunity and image detail-preservation. Second, the modification of membership partition, based on the distance between pixels within local spatial neighbors and clustering centers, is replaced by local membership filtering that depends only on the spatial neighbors of membership partition. Compared with state-of-the-art algorithms, the proposed FRFCM algorithm is simpler and significantly faster, since it is unnecessary to compute the distance between pixels within local spatial neighbors and clustering centers. In addition, it is efficient for noisy image segmentation because membership filtering are able to improve membership partition matrix efficiently. Experiments performed on synthetic and real-world images demonstrate that the proposed algorithm not only achieves better results, but also requires less time than the state-of-the-art algorithms for image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
端庄半凡完成签到 ,获得积分10
7秒前
7秒前
xiaowang完成签到 ,获得积分10
10秒前
12秒前
静待花开发布了新的文献求助10
12秒前
12秒前
蔚欢完成签到 ,获得积分10
13秒前
起风了发布了新的文献求助20
16秒前
ZIJUNZHAO发布了新的文献求助10
17秒前
兴奋孤风完成签到,获得积分10
18秒前
18秒前
19秒前
21秒前
21秒前
taozhiqi完成签到 ,获得积分10
23秒前
23秒前
呆呆呆呆应助兴奋孤风采纳,获得60
23秒前
24秒前
胡萝卜z完成签到 ,获得积分10
26秒前
年鱼精完成签到 ,获得积分10
26秒前
目分发布了新的文献求助10
26秒前
27秒前
张元东完成签到 ,获得积分10
29秒前
EED完成签到 ,获得积分10
29秒前
liu完成签到,获得积分10
30秒前
顷梦完成签到,获得积分10
30秒前
liu发布了新的文献求助10
32秒前
你好完成签到 ,获得积分10
33秒前
英俊的铭应助daior采纳,获得10
33秒前
嘿嘿完成签到 ,获得积分10
34秒前
35秒前
充电宝应助顷梦采纳,获得10
38秒前
农夫完成签到,获得积分10
42秒前
123669发布了新的文献求助10
42秒前
起风了完成签到,获得积分10
43秒前
目分完成签到,获得积分10
43秒前
44秒前
我爱学习完成签到 ,获得积分20
44秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219617
求助须知:如何正确求助?哪些是违规求助? 2868402
关于积分的说明 8160892
捐赠科研通 2535463
什么是DOI,文献DOI怎么找? 1367918
科研通“疑难数据库(出版商)”最低求助积分说明 645118
邀请新用户注册赠送积分活动 618457