材料科学
膜
共聚物
聚合物
极限抗拉强度
化学工程
乙醚
纳米颗粒
气体分离
热扩散率
高分子化学
天然橡胶
复合材料
纳米技术
有机化学
化学
物理
工程类
量子力学
生物化学
作者
Zachary P. Smith,Jonathan E. Bachman,Tao Li,Bernd Gludovatz,Victor Kusuma,Ting Xu,David Hopkinson,Robert O. Ritchie,Jeffrey R. Long
标识
DOI:10.1021/acs.chemmater.7b02908
摘要
Mixed-matrix membranes (MMMs) were formed by incorporating M2(dobdc) (M = Mg, Ni; dobdc4– = 2,5-dioxido-1,4-benzenedicarboxylate) metal–organic framework (MOF) nanoparticles in a series of poly(ether-imide) copolymers. Addition of the MOF nanoparticles improved the permeability of H2, N2, CH4, and CO2 relative to the pure copolymer by increasing gas solubility and, in most cases, diffusivity. More limited improvements in diffusivity were observed for the more strongly adsorbing gases. Because of such transport considerations, improvements in permeability and selectivity were most pronounced for H2/CH4 and H2/N2 separations. Incorporation of a greater ether content within the copolymers led to the formation of defect-free MMMs by physically sealing polymer–MOF interfacial defects, allowing higher MOF loadings to be achieved. For Mg2(dobdc), selective, defect-free films could be formed with loadings of up to 51 wt %. However, at these high loadings, films became weak and brittle. The mechanical properties of the composite materials were therefore quantified by tensile tests and compared to those of the neat polymers used commercially for membrane film formation. High contents of flexible ether units and small MOF nanoparticle sizes were found to be necessary to form strong and ductile MMMs, although clear trade-offs exist between transport performance, MOF loading, and mechanical properties. These trade-offs are critically examined to evaluate the current limitations and potential benefits to forming M2(dobdc) MMMs using this rubber toughening approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI