Bayesian sensitivity analysis for unmeasured confounding in causal mediation analysis

混淆 贝叶斯概率 因果推理 灵敏度(控制系统) 调解 计量经济学 因果分析 统计 因果模型 计算机科学 心理学 数学 社会学 电子工程 工程类 社会科学
作者
Lawrence C. McCandless,Julian M. Somers
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:28 (2): 515-531 被引量:24
标识
DOI:10.1177/0962280217729844
摘要

Causal mediation analysis techniques enable investigators to examine whether the effect of the exposure on an outcome is mediated by some intermediate variable. Motivated by a data example from epidemiology, we consider estimation of natural direct and indirect effects on a survival outcome. An important concern is bias from confounders that may be unmeasured. Estimating natural direct and indirect effects requires an elaborate series of assumptions in order to identify the target quantities. The analyst must carefully measure and adjust for important predictors of the exposure, mediator and outcome. Omitting important confounders may bias the results in a way that is difficult to predict. In recent years, several methods have been proposed to explore sensitivity to unmeasured confounding in mediation analysis. However, many of these methods limit complexity by relying on a handful of sensitivity parameters that are difficult to interpret, or alternatively, by assuming that specific patterns of unmeasured confounding are absent. Instead, we propose a simple Bayesian sensitivity analysis technique that is indexed by four bias parameters. Our method has the unique advantage that it is able to simultaneously assess unmeasured confounding in the mediator–outcome, exposure–outcome and exposure–mediator relationships. It is a natural Bayesian extension of the sensitivity analysis methodologies of VanderWeele, which have been widely used in the epidemiology literature. We present simulation findings, and additionally, we illustrate the method in an epidemiological study of mortality rates in criminal offenders from British Columbia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaoyue驳回了桐桐应助
刚刚
1秒前
重要初翠发布了新的文献求助10
1秒前
Cruffin完成签到 ,获得积分10
1秒前
苦逼的科研人完成签到,获得积分10
1秒前
青草蛋糕完成签到 ,获得积分10
1秒前
温暖寻琴发布了新的文献求助10
2秒前
无私萧发布了新的文献求助10
3秒前
gyj发布了新的文献求助10
4秒前
Zhou完成签到,获得积分0
5秒前
zzz完成签到,获得积分20
6秒前
帅不屈服完成签到,获得积分10
7秒前
7秒前
9秒前
勤恳绝义发布了新的文献求助10
9秒前
10秒前
啦啦啦完成签到,获得积分10
10秒前
11秒前
香蕉觅云应助pysa采纳,获得10
11秒前
鹿lu完成签到 ,获得积分10
12秒前
12秒前
害羞的强炫完成签到,获得积分10
12秒前
gyj完成签到,获得积分10
13秒前
可靠的伊关注了科研通微信公众号
14秒前
共享精神应助否认冶游史采纳,获得10
14秒前
15秒前
斯文败类应助luckin9采纳,获得10
15秒前
chenxin7271发布了新的文献求助10
15秒前
领导范儿应助liuliu75采纳,获得10
15秒前
Dingyiren发布了新的文献求助20
15秒前
李Li发布了新的文献求助10
16秒前
16秒前
16秒前
文艺雪糕发布了新的文献求助10
16秒前
辛苦打工人完成签到,获得积分10
17秒前
qgd完成签到,获得积分10
17秒前
17秒前
17秒前
爆米花应助lu采纳,获得10
17秒前
摩登灰太狼完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157968
求助须知:如何正确求助?哪些是违规求助? 2809281
关于积分的说明 7881247
捐赠科研通 2467760
什么是DOI,文献DOI怎么找? 1313696
科研通“疑难数据库(出版商)”最低求助积分说明 630498
版权声明 601943