Stock Price Prediction via Discovering Multi-Frequency Trading Patterns

计算机科学 计量经济学 高频交易 交易策略 股票市场 库存(枪支) 算法交易 时频分析 金融经济学 经济 电信 机械工程 生物 工程类 古生物学 雷达
作者
Liheng Zhang,Charų C. Aggarwal,Guo-Jun Qi
标识
DOI:10.1145/3097983.3098117
摘要

Stock prices are formed based on short and/or long-term commercial and trading activities that reflect different frequencies of trading patterns. However, these patterns are often elusive as they are affected by many uncertain political-economic factors in the real world, such as corporate performances, government policies, and even breaking news circulated across markets. Moreover, time series of stock prices are non-stationary and non-linear, making the prediction of future price trends much challenging. To address them, we propose a novel State Frequency Memory (SFM) recurrent network to capture the multi-frequency trading patterns from past market data to make long and short term predictions over time. Inspired by Discrete Fourier Transform (DFT), the SFM decomposes the hidden states of memory cells into multiple frequency components, each of which models a particular frequency of latent trading pattern underlying the fluctuation of stock price. Then the future stock prices are predicted as a nonlinear mapping of the combination of these components in an Inverse Fourier Transform (IFT) fashion. Modeling multi-frequency trading patterns can enable more accurate predictions for various time ranges: while a short-term prediction usually depends on high frequency trading patterns, a long-term prediction should focus more on the low frequency trading patterns targeting at long-term return. Unfortunately, no existing model explicitly distinguishes between various frequencies of trading patterns to make dynamic predictions in literature. The experiments on the real market data also demonstrate more competitive performance by the SFM as compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助好好采纳,获得10
3秒前
新一完成签到 ,获得积分10
3秒前
真实的芷天完成签到,获得积分10
6秒前
阳光的乐巧完成签到 ,获得积分10
6秒前
6秒前
7秒前
学习者发布了新的文献求助20
8秒前
可爱的函函应助Revovler采纳,获得10
9秒前
long发布了新的文献求助10
10秒前
平淡纸飞机完成签到 ,获得积分10
10秒前
Hou发布了新的文献求助20
10秒前
11秒前
11秒前
Wanfeng应助科研小趴菜采纳,获得20
12秒前
12秒前
13秒前
神勇灵竹完成签到 ,获得积分10
14秒前
Lei完成签到,获得积分10
14秒前
15秒前
幸福大白完成签到,获得积分10
15秒前
16秒前
17秒前
明天发布了新的文献求助10
19秒前
占那个完成签到 ,获得积分10
20秒前
Revovler发布了新的文献求助10
20秒前
英姑应助long采纳,获得10
21秒前
李健应助001采纳,获得10
21秒前
22秒前
小刘一定能读C9博完成签到 ,获得积分10
22秒前
科研野狗完成签到 ,获得积分10
23秒前
归海一刀完成签到,获得积分10
24秒前
Honey完成签到,获得积分10
26秒前
cadcae发布了新的文献求助30
27秒前
27秒前
28秒前
28秒前
30秒前
学术小白发布了新的文献求助10
31秒前
hmhu发布了新的文献求助10
31秒前
结实雨旋发布了新的文献求助10
32秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212203
求助须知:如何正确求助?哪些是违规求助? 2861086
关于积分的说明 8127255
捐赠科研通 2526986
什么是DOI,文献DOI怎么找? 1360640
科研通“疑难数据库(出版商)”最低求助积分说明 643289
邀请新用户注册赠送积分活动 615619