Abstract Thermal runway constitutes the most pressing safety issue in lithium‐ion batteries and supercapacitors of large‐scale and high‐power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging–discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal‐responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal‐responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal‐responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol–gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal‐responsive polymers toward the prevention of thermal runaway in next‐generation smart electrochemical storage devices.