A strategy for the discovery and validation of toxicity quality marker of Chinese medicine based on network toxicology

毒性 背景(考古学) 环境毒理学 急性毒性 毒理 计算生物学 化学 生物 古生物学 有机化学
作者
Yubo Li,Yani Zhang,Yuming Wang,Yamei Li,Feifan Yang,Pengjie Zhang,Yanjun Zhang,Changxiao Liu
出处
期刊:Phytomedicine [Elsevier]
卷期号:54: 365-370 被引量:32
标识
DOI:10.1016/j.phymed.2018.01.018
摘要

Considering that the quality control indicators in Chinese medicine (CM) are disconnected from safety and effectiveness, Prof. Chang-xiao Liu et al. has proposed a concept regarding the quality marker (Q-marker) of CM to promote the healthy development of the CM industry and improve the CM quality control method.In this study, we proposed a strategy to discover and verify the toxicity Q-marker of CM based on network toxicology.First, traditional biochemical pathology indicators and sensitive biomarkers were used to predict the toxicity of CM. Next, the chemical composition of toxic CMs and their metabolites were rapidly identified by multidimensional detection techniques. Subsequently, the interaction network between "toxicity - toxic chemical composition - toxic target - effect pathway" was built through network toxicology, and the potential toxicity Q-marker of CM was initially screened. Finally, the chemical properties of toxicity Q-markers were verified by traceability and testability.Based on the predicted results of network toxicology, the toxic compounds of CM were preliminarily identified, and the toxic mechanism was comprehensively interpreted. In the context of definite biological properties and chemical properties, the toxicity Q-marker was finally confirmed.This extensive review provides a study method for the toxicity Q-marker of CM, which helps to systemically and thoroughly reveal the internal toxicity mechanism of CM. The in-depth study of the toxicity Q-marker provides the material basis and technical support for the safety evaluation of CM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
似是而非发布了新的文献求助10
刚刚
独特冬天完成签到,获得积分10
4秒前
nml发布了新的文献求助10
9秒前
chen应助T拐拐采纳,获得20
10秒前
13秒前
14秒前
15秒前
轻松笙发布了新的文献求助10
17秒前
华仔应助夏之桃夭采纳,获得30
19秒前
爱生气的小龙完成签到 ,获得积分10
19秒前
二十七垚发布了新的文献求助10
21秒前
23秒前
23秒前
24秒前
郦稀完成签到 ,获得积分10
24秒前
追梦人完成签到 ,获得积分10
24秒前
25秒前
淡然乌龟完成签到,获得积分10
27秒前
kitty发布了新的文献求助10
27秒前
28秒前
熬夜猝死的我完成签到 ,获得积分10
28秒前
淡然乌龟发布了新的文献求助10
30秒前
sxs发布了新的文献求助10
30秒前
30秒前
赘婿应助二十七垚采纳,获得10
30秒前
yg发布了新的文献求助10
31秒前
CodeCraft应助丶氵一生里采纳,获得10
31秒前
神光发布了新的文献求助20
32秒前
32秒前
汉堡包应助夏之桃夭采纳,获得30
33秒前
qft发布了新的文献求助10
35秒前
zihuan发布了新的文献求助10
37秒前
37秒前
丶氵一生里完成签到,获得积分10
41秒前
院士人启动完成签到 ,获得积分10
43秒前
43秒前
44秒前
我是老大应助qft采纳,获得10
45秒前
我是老大应助雪山飞龙采纳,获得10
45秒前
完美世界应助wang采纳,获得10
45秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356183
求助须知:如何正确求助?哪些是违规求助? 2979786
关于积分的说明 8691888
捐赠科研通 2661307
什么是DOI,文献DOI怎么找? 1457154
科研通“疑难数据库(出版商)”最低求助积分说明 674694
邀请新用户注册赠送积分活动 665497