Cushioned–Density Gradient Ultracentrifugation (C-DGUC): A Refined and High Performance Method for the Isolation, Characterization, and Use of Exosomes

微泡 外体 超离心机 生物发生 细胞外小泡 细胞生物学 纳米粒子跟踪分析 分离(微生物学) 效应器 计算生物学 生物 小泡 细胞 化学 生物信息学 小RNA 生物化学 基因
作者
Kang Li,David Wong,Justin K Y Hong,Robert L. Raffaı̈
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 69-83 被引量:109
标识
DOI:10.1007/978-1-4939-7652-2_7
摘要

Exosomes represent one class of extracellular vesicles that are thought to be shed by all cell types. Although the exact nature of exosome biogenesis and function remains incompletely understood, they are increasingly recognized as a source of intercellular communication in health and disease. Recent observations of RNA exchange via donor cell-derived exosomes that exert genetic regulation in recipient cells have led to a boon into exosome research. The excitement and promise of exosomes as a new therapeutic avenue for human pathologies remain limited by challenges associated with their isolation from culture media and biofluids. The introduction of new methodologies to facilitate the isolation of exosomes has simultaneously raised concerns related to the reproducibility of studies describing exosome effector functions. Even high-speed ultracentrifugation, the first and long considered gold standard approach for exosome isolation has recently been noted to be subject to uncontrolled variables that could impact functional readouts of exosome preparations. This chapter describes principles and methods that attempt to overcome such limitations by first concentrating exosomes in a liquid cushion and subsequently resolving them using density gradient ultracentrifugation. Our approach avoids possible complications associated with direct pelleting onto plastic tubes and allows for further purification of exosomes from dense protein aggregates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忐忑的草丛完成签到,获得积分10
刚刚
1秒前
沉静皮带完成签到 ,获得积分10
1秒前
HR112应助沙河口大长硬采纳,获得10
1秒前
2秒前
MissXia完成签到,获得积分10
3秒前
00完成签到 ,获得积分10
3秒前
juju1234完成签到 ,获得积分10
4秒前
不秃燃的小老弟完成签到 ,获得积分10
5秒前
5秒前
东风完成签到,获得积分10
5秒前
懒猫完成签到,获得积分10
12秒前
嘟嘟豆806完成签到 ,获得积分10
12秒前
英勇海完成签到 ,获得积分10
12秒前
眼睛大智宸完成签到,获得积分10
13秒前
14秒前
她的城完成签到,获得积分0
18秒前
ESC惠子子子子子完成签到 ,获得积分10
18秒前
兴奋的若菱完成签到 ,获得积分10
18秒前
Gilana应助沙河口大长硬采纳,获得10
19秒前
威武冷雪完成签到,获得积分10
19秒前
19秒前
刘汉淼完成签到,获得积分10
20秒前
20秒前
无限的寄真完成签到 ,获得积分10
21秒前
孤狼完成签到,获得积分10
21秒前
南城雨落完成签到,获得积分10
21秒前
hyxu678完成签到,获得积分10
21秒前
小白完成签到,获得积分10
21秒前
少云六到十完成签到,获得积分10
22秒前
李李李完成签到,获得积分10
25秒前
落后世界发布了新的文献求助10
26秒前
Bambookiller完成签到,获得积分10
28秒前
闻屿完成签到,获得积分10
28秒前
31秒前
MrChew完成签到 ,获得积分10
31秒前
拉布拉多多不多完成签到,获得积分10
33秒前
沙河口大长硬完成签到,获得积分10
34秒前
落后世界完成签到,获得积分10
34秒前
三伏天完成签到,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733493
求助须知:如何正确求助?哪些是违规求助? 3277642
关于积分的说明 10003680
捐赠科研通 2993729
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944