Association between fine particulate matter chemical constituents and airway inflammation: A panel study among healthy adults in China

呼出气一氧化氮 四分位间距 微粒 环境化学 医学 动物科学 化学 内科学 炎症 全身炎症 生物 有机化学
作者
Jingjin Shi,Renjie Chen,Changyuan Yang,Zhijing Lin,Jing Cai,Yongjie Xia,Cuicui Wang,Huichu Li,Natalie M. Johnson,Xiaohui Xu,Zhuohui Zhao,Haidong Kan
出处
期刊:Environmental Research [Elsevier]
卷期号:150: 264-268 被引量:68
标识
DOI:10.1016/j.envres.2016.06.022
摘要

Ambient fine particulate matter (PM2.5) air pollution has been associated with increased airway inflammation, but the roles of various PM2.5 constituents remain to be determined. To investigate the acute effects of PM2.5 constituents on fractional exhaled nitric oxide (FeNO), a well-established biomarker of respiratory inflammation. A longitudinal panel study was performed among 32 healthy young adults in Shanghai, China from January 12th to February 6th, 2015. FeNO was repeatedly measured, 6–8 times per subject. Real-time mass concentration of ambient PM2.5 and chemical constituents were obtained from a nearby monitoring station. Linear mixed-effect models were applied to evaluate the association between FeNO and PM2.5 constituents, with the adjustment of age, gender, body mass index, temperature, relative humidity and day of week. The robustness of constituents' effects was also evaluated. A total of 234 effective measurements of FeNO were obtained with a geometric mean of 13.1 ppb. The PM2.5-FeNO associations were strongest at lags of 0–6 h and diminished at lags longer than 12 h. An interquartile range increase in PM2.5 constituents (NH4+, NO3−, K+, SO42− and elemental carbon) at lags of 0–6 h were significantly associated with increments in FeNO by 12.3%, 11.3%, 11.1%, 9.6% and 10.7%, respectively. After controlling for PM2.5 total mass and the colinearity, only elemental carbon remained significant. Several chemical constituents of PM2.5 may impact FeNO following acute exposure. Elemental carbon in particular may be the primary component responsible for increased airway inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助千幻采纳,获得10
刚刚
刚刚
dddddd完成签到,获得积分10
刚刚
桂魄发布了新的文献求助10
刚刚
年轻的咖啡豆完成签到,获得积分20
1秒前
1秒前
绿洲发布了新的文献求助10
1秒前
1秒前
2秒前
aDou完成签到 ,获得积分10
2秒前
脑洞疼应助bc采纳,获得10
2秒前
NEMO发布了新的文献求助10
2秒前
李健应助mammoth采纳,获得20
2秒前
熊boy发布了新的文献求助10
2秒前
天真思雁发布了新的文献求助10
2秒前
3秒前
情怀应助蔡蔡不菜菜采纳,获得10
3秒前
shouyu29应助MADKAI采纳,获得10
4秒前
CipherSage应助MADKAI采纳,获得10
4秒前
乐乐应助MADKAI采纳,获得10
4秒前
ChangSZ应助MADKAI采纳,获得10
4秒前
乐乐应助MADKAI采纳,获得10
4秒前
小飞七应助MADKAI采纳,获得10
4秒前
Akim应助MADKAI采纳,获得20
4秒前
科研通AI5应助MADKAI采纳,获得10
4秒前
充电宝应助MADKAI采纳,获得10
4秒前
buno应助MADKAI采纳,获得10
4秒前
4秒前
小唐完成签到 ,获得积分0
6秒前
思源应助年轻的咖啡豆采纳,获得10
6秒前
8秒前
科研通AI5应助junc采纳,获得20
8秒前
绿洲完成签到,获得积分10
9秒前
9秒前
yf_zhu发布了新的文献求助10
9秒前
正直亦旋发布了新的文献求助10
9秒前
10秒前
华仔应助招财不肥采纳,获得10
10秒前
健康的梦曼完成签到 ,获得积分10
10秒前
最最最发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762