断奶
动物科学
断奶
油菜
营养物
生物
化学
食品科学
内分泌学
生态学
作者
A. D. Beaulieu,Crystal L Levesque,John F. Patience
标识
DOI:10.2527/2006.8451159x
摘要
This study was conducted to evaluate the effects of dietary energy density and weaning environment on pig performance. Treatment diets were formulated to vary in DE concentration by changing the relative proportions of low (barley) and high (wheat, oat groats, and canola oil) energy ingredients. In Exp. 1, 84 pigs in each of 3 replications, providing a total of 252 pigs, were weaned at 17 × 2 d of age and randomly assigned to either an on-site or an off-site nursery and to 1 of 3 dietary DE concentrations (3.35, 3.50, or 3.65 Mcal/kg). Each site consisted of a nursery containing 6 pens; 3 pens housed 7 barrows and 3 housed 7 gilts. All pigs received nontreatment diets in phase I (17 to 19 d of age) and phase II (20 to 25 d of age), respectively. Dietary treatments were fed from 25 to 56 d of age. Off-site pigs were heavier at 56 d of age (23.4 vs. 21.3 kg; P < 0.05) and had greater ADFI (0.77 vs. 0.69 kg/d; P < 0.01) than on-site pigs. There was a linear decrease in ADG (P < 0.01) and ADFI (P < 0.001) with increasing DE concentration. Efficiency of gain improved (P < 0.01) with increasing DE concentration. There was no interaction between weaning site and diet DE concentration, indicating that on-site and off-site pigs responded similarly to changes in diet DE concentration. In Exp. 2, nutrient digestibility of the treatment diets used in Exp. 1 was determined using 36 pigs with either ad libitum or feed intake restricted to 5.5% of BW. Energy and N digestibility increased (P < 0.001) with increasing DE concentration. Nitrogen retention and daily DE intake increased with DE concentration in pigs fed the restricted amount of feed (P < 0.05). These results indicate that weaning off-site improves pig weight gain. The weanling pig was able to compensate for reduced dietary DE concentration through increased feed intake. Growth limitation in the weanling pig may not be overcome simply by increasing dietary DE concentration.
科研通智能强力驱动
Strongly Powered by AbleSci AI