Integration of Scheduling and Dynamic Optimization of Batch Processes under Uncertainty: Two-Stage Stochastic Programming Approach and Enhanced Generalized Benders Decomposition Algorithm

数学优化 计算机科学 随机规划 本德分解 调度(生产过程) 分解 算法 动态规划 二进制数 数学 生态学 生物 算术
作者
Yunfei Chu,Fengqi You
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:52 (47): 16851-16869 被引量:73
标识
DOI:10.1021/ie402621t
摘要

Integration of scheduling and dynamic optimization significantly improves the overall performance of a production process compared to the traditional sequential method. However, most integrated methods focus on solving deterministic problems without explicitly taking process uncertainty into account. We propose a novel integrated method for sequential batch processes under uncertainty. The integrated problem is formulated into a two-stage stochastic program. The first-stage decisions are modeled with binary variables for assignment and sequencing while the second-stage decisions are the remaining ones. To solve the resulting complicated integrated problem, we develop two efficient algorithms based on the framework of generalized Benders decomposition. The first algorithm decomposes the integrated problem according to the scenarios so that the subproblems can be optimized independently over each scenario. Besides the scenario decomposition, the second algorithm further decomposes dynamic models from the scheduling model, resulting in a nested decomposition structure. For a complicated case study with more than 3 million variables/equations under 100 scenarios, the direct solution approach does not find a feasible solution while the two decomposition algorithms return the optimal solution. The computational time for the first algorithm is 23.9 h, and that for the second algorithm is only 3.3 h. Furthermore, the integrated method returns a higher average profit than the sequential method by 17.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助Birdy采纳,获得10
1秒前
小蘑菇应助Bonnie采纳,获得10
1秒前
Kay76完成签到,获得积分10
1秒前
搞怪的又蓝完成签到,获得积分10
2秒前
纯真的夏兰完成签到,获得积分10
2秒前
英俊延恶完成签到,获得积分10
2秒前
小慈完成签到,获得积分10
3秒前
3秒前
龍fei完成签到,获得积分10
3秒前
zhangpeng完成签到,获得积分10
3秒前
wzx完成签到,获得积分10
3秒前
Yonina完成签到,获得积分10
4秒前
4秒前
出水芙蓉完成签到,获得积分10
4秒前
心灵美千易完成签到,获得积分10
4秒前
janie完成签到,获得积分10
5秒前
xxj完成签到 ,获得积分10
5秒前
6秒前
111发布了新的文献求助20
6秒前
搜集达人应助自觉柠檬采纳,获得10
6秒前
文文文完成签到,获得积分10
6秒前
AAAAA发布了新的文献求助10
6秒前
sci来完成签到,获得积分10
6秒前
NexusExplorer应助1111采纳,获得10
6秒前
曾小莹完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
研友_VZG7GZ应助故意的熠彤采纳,获得10
8秒前
meme发布了新的文献求助10
8秒前
wzx发布了新的文献求助10
8秒前
多情怜蕾完成签到,获得积分10
9秒前
hashtag完成签到,获得积分10
10秒前
哈尼完成签到,获得积分20
10秒前
Kira发布了新的文献求助10
10秒前
11秒前
郁金香完成签到,获得积分10
11秒前
12秒前
13秒前
pluto应助monoklatt采纳,获得10
13秒前
今后应助Lion采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259