转座因子
基因组
反向重复
螨
生物
计算生物学
换位(逻辑)
计算机科学
遗传学
基因
人工智能
植物
作者
Congting Ye,Guoli Ji,Chun Liang
摘要
Abstract Miniature inverted repeat transposable elements (MITEs) are prevalent in eukaryotic genomes, including plants and animals. Classified as a type of non-autonomous DNA transposable elements, they play important roles in genome organization and evolution. Comprehensive and accurate genome-wide detection of MITEs in various eukaryotic genomes can improve our understanding of their origins, transposition processes, regulatory mechanisms and biological relevance with regard to gene structures, expression and regulation. In this paper, we present a new MATLAB-based program called detectMITE that employs a novel numeric calculation algorithm to replace conventional string matching algorithms in MITE detection, adopts the Lempel-Ziv complexity algorithm to filter out MITE candidates with low complexity and utilizes the powerful clustering program CD-HIT to cluster similar MITEs into MITE families. Using the rice genome as test data, we found that detectMITE can more accurately, comprehensively and efficiently detect MITEs on a genome-wide scale than other popular MITE detection tools. Through comparison with the potential MITEs annotated in Repbase, the widely used eukaryotic repeat database, detectMITE has been shown to find known and novel MITEs with a complete structure and full-length copies in the genome. detectMITE is an open source tool ( https://sourceforge.net/projects/detectmite ).
科研通智能强力驱动
Strongly Powered by AbleSci AI