Recent Advances in First Principles Computational Research of Cathode Materials for Lithium-Ion Batteries

锂(药物) 阴极 材料科学 纳米技术 离子 工程物理 化学 物理化学 有机化学 生物 物理 内分泌学
作者
Ying Shirley Meng,M. Elena Arroyo-de Dompablo
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (5): 1171-1180 被引量:145
标识
DOI:10.1021/ar2002396
摘要

To meet the increasing demands of energy storage, particularly for transportation applications such as plug-in hybrid electric vehicles, researchers will need to develop improved lithium-ion battery electrode materials that exhibit high energy density, high power, better safety, and longer cycle life. The acceleration of materials discovery, synthesis, and optimization will benefit from the combination of both experimental and computational methods. First principles (ab Initio) computational methods have been widely used in materials science and can play an important role in accelerating the development and optimization of new energy storage materials. These methods can prescreen previously unknown compounds and can explain complex phenomena observed with these compounds. Intercalation compounds, where Li(+) ions insert into the host structure without causing significant rearrangement of the original structure, have served as the workhorse for lithium ion rechargeable battery electrodes. Intercalation compounds will also facilitate the development of new battery chemistries such as sodium-ion batteries. During the electrochemical discharge reaction process, the intercalating species travel from the negative to the positive electrode, driving the transition metal ion in the positive electrode to a lower oxidation state, which delivers useful current. Many materials properties change as a function of the intercalating species concentrations (at different state of charge). Therefore, researchers will need to understand and control these dynamic changes to optimize the electrochemical performance of the cell. In this Account, we focus on first-principles computational investigations toward understanding, controlling, and improving the intrinsic properties of five well known high energy density Li intercalation electrode materials: layered oxides (LiMO2), spinel oxides (LiM2O4), olivine phosphates (LiMPO4), silicates-Li2MSiO4, and the tavorite-LiM(XO4)F (M = 3d transition metal elements). For these five classes of materials, we describe the crystal structures, the redox potentials, the ion mobilities, the possible phase transformation mechanisms, and structural stability changes, and the relevance of these properties to the development of high-energy, high-power, low-cost electrochemical systems. These results demonstrate the importance of computational tools in real-world materials development, to optimize or minimize experimental synthesis and testing, and to predict a material's performance under diverse conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东晓发布了新的文献求助10
刚刚
1秒前
peace完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
361发布了新的文献求助10
6秒前
周勇峰发布了新的文献求助10
6秒前
Mary关注了科研通微信公众号
6秒前
JAMA兜里揣发布了新的文献求助100
6秒前
Chelsea完成签到,获得积分10
7秒前
和花花完成签到,获得积分10
7秒前
effort完成签到,获得积分10
7秒前
那只幸运的小肥羊完成签到,获得积分10
8秒前
8秒前
9秒前
压力是多的完成签到,获得积分10
9秒前
10秒前
11秒前
安详巧凡关注了科研通微信公众号
11秒前
cy完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
跳跃鱼完成签到,获得积分10
14秒前
14秒前
不想看文献完成签到,获得积分10
15秒前
aq22完成签到 ,获得积分10
16秒前
秋沐完成签到,获得积分10
16秒前
16秒前
梦璃完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
情怀应助xueshu采纳,获得10
17秒前
冷静伟诚完成签到,获得积分10
17秒前
臭皮匠发布了新的文献求助10
18秒前
科研通AI6应助12采纳,获得10
18秒前
Zoey完成签到,获得积分10
18秒前
夏天发布了新的文献求助30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684019
求助须知:如何正确求助?哪些是违规求助? 5034811
关于积分的说明 15183309
捐赠科研通 4843392
什么是DOI,文献DOI怎么找? 2596672
邀请新用户注册赠送积分活动 1549384
关于科研通互助平台的介绍 1507854