A Multiobjective Evolutionary Algorithm Based on Decision Variable Analyses for Multiobjective Optimization Problems With Large-Scale Variables

数学优化 计算机科学 进化算法 趋同(经济学) 进化计算 集合(抽象数据类型) 功能(生物学) 人工智能 数学 变量(数学) 算法 机器学习 经济增长 进化生物学 生物 数学分析 经济 程序设计语言
作者
Xiaoliang Ma,Fang Liu,Yutao Qi,Xiaodong Wang,Lingling Li,Licheng Jiao,Minglei Yin,Maoguo Gong
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 275-298 被引量:389
标识
DOI:10.1109/tevc.2015.2455812
摘要

State-of-the-art multiobjective evolutionary algorithms (MOEAs) treat all the decision variables as a whole to optimize performance. Inspired by the cooperative coevolution and linkage learning methods in the field of single objective optimization, it is interesting to decompose a difficult high-dimensional problem into a set of simpler and low-dimensional subproblems that are easier to solve. However, with no prior knowledge about the objective function, it is not clear how to decompose the objective function. Moreover, it is difficult to use such a decomposition method to solve multiobjective optimization problems (MOPs) because their objective functions are commonly conflicting with one another. That is to say, changing decision variables will generate incomparable solutions. This paper introduces interdependence variable analysis and control variable analysis to deal with the above two difficulties. Thereby, an MOEA based on decision variable analyses (DVAs) is proposed in this paper. Control variable analysis is used to recognize the conflicts among objective functions. More specifically, which variables affect the diversity of generated solutions and which variables play an important role in the convergence of population. Based on learned variable linkages, interdependence variable analysis decomposes decision variables into a set of low-dimensional subcomponents. The empirical studies show that DVA can improve the solution quality on most difficult MOPs. The code and supplementary material of the proposed algorithm are available at http://web.xidian.edu.cn/fliu/paper.html .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特乘云完成签到,获得积分10
2秒前
踏实的怜菡完成签到 ,获得积分10
6秒前
小蘑菇应助良辰采纳,获得10
7秒前
7秒前
竹桃完成签到 ,获得积分10
8秒前
9秒前
葵屿完成签到,获得积分10
10秒前
Kyrie完成签到,获得积分10
11秒前
自信的坤发布了新的文献求助10
12秒前
wgm完成签到,获得积分10
12秒前
hhyy完成签到 ,获得积分10
13秒前
123完成签到 ,获得积分10
13秒前
13秒前
xiaojian_291发布了新的文献求助20
14秒前
细心香烟完成签到 ,获得积分10
14秒前
星际舟完成签到,获得积分10
15秒前
英俊丹寒完成签到 ,获得积分10
15秒前
17秒前
复杂易文发布了新的文献求助10
18秒前
小六子123完成签到,获得积分10
20秒前
weizhi完成签到,获得积分10
21秒前
专注的安卉完成签到,获得积分20
21秒前
zhang完成签到,获得积分10
23秒前
24秒前
金蛋蛋完成签到 ,获得积分10
24秒前
科研通AI5应助百里如雪采纳,获得10
25秒前
for_abSCI完成签到,获得积分10
25秒前
jing完成签到,获得积分10
26秒前
田様应助gapsong采纳,获得10
27秒前
zhaxiao发布了新的文献求助10
28秒前
29秒前
粗犷的灵松完成签到,获得积分10
31秒前
包容友儿完成签到,获得积分10
32秒前
黄柠檬完成签到,获得积分20
32秒前
Hindiii完成签到,获得积分10
32秒前
wanci应助yangyang采纳,获得10
34秒前
chenxilulu完成签到,获得积分10
34秒前
35秒前
善学以致用应助高贵季节采纳,获得10
35秒前
GSQ发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761136
求助须知:如何正确求助?哪些是违规求助? 3305089
关于积分的说明 10132226
捐赠科研通 3019082
什么是DOI,文献DOI怎么找? 1657974
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754608