A Multiobjective Evolutionary Algorithm Based on Decision Variable Analyses for Multiobjective Optimization Problems With Large-Scale Variables

数学优化 计算机科学 进化算法 趋同(经济学) 进化计算 集合(抽象数据类型) 功能(生物学) 人工智能 数学 变量(数学) 算法 机器学习 经济增长 进化生物学 生物 数学分析 经济 程序设计语言
作者
Xiaoliang Ma,Fang Liu,Yutao Qi,Xiaodong Wang,Lingling Li,Licheng Jiao,Minglei Yin,Maoguo Gong
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 275-298 被引量:389
标识
DOI:10.1109/tevc.2015.2455812
摘要

State-of-the-art multiobjective evolutionary algorithms (MOEAs) treat all the decision variables as a whole to optimize performance. Inspired by the cooperative coevolution and linkage learning methods in the field of single objective optimization, it is interesting to decompose a difficult high-dimensional problem into a set of simpler and low-dimensional subproblems that are easier to solve. However, with no prior knowledge about the objective function, it is not clear how to decompose the objective function. Moreover, it is difficult to use such a decomposition method to solve multiobjective optimization problems (MOPs) because their objective functions are commonly conflicting with one another. That is to say, changing decision variables will generate incomparable solutions. This paper introduces interdependence variable analysis and control variable analysis to deal with the above two difficulties. Thereby, an MOEA based on decision variable analyses (DVAs) is proposed in this paper. Control variable analysis is used to recognize the conflicts among objective functions. More specifically, which variables affect the diversity of generated solutions and which variables play an important role in the convergence of population. Based on learned variable linkages, interdependence variable analysis decomposes decision variables into a set of low-dimensional subcomponents. The empirical studies show that DVA can improve the solution quality on most difficult MOPs. The code and supplementary material of the proposed algorithm are available at http://web.xidian.edu.cn/fliu/paper.html .

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1259杨完成签到,获得积分10
1秒前
等待念之完成签到,获得积分10
1秒前
Murphy完成签到 ,获得积分10
5秒前
huiluowork完成签到 ,获得积分10
9秒前
南星完成签到 ,获得积分10
10秒前
华仔应助熊熊阁采纳,获得10
10秒前
皖医梁朝伟完成签到 ,获得积分0
13秒前
专注的问寒应助ceeray23采纳,获得50
13秒前
Hey完成签到 ,获得积分10
14秒前
SciGPT应助默默采纳,获得10
17秒前
舒心的雍发布了新的文献求助10
18秒前
21秒前
21秒前
英姑应助daguan采纳,获得10
22秒前
liubo完成签到,获得积分10
22秒前
alala应助ll采纳,获得10
23秒前
23秒前
25秒前
庾尔风发布了新的文献求助10
26秒前
熊熊阁发布了新的文献求助10
26秒前
孙同学发布了新的文献求助10
27秒前
小王好饿完成签到 ,获得积分10
28秒前
闪闪寄风完成签到,获得积分10
29秒前
默默发布了新的文献求助10
30秒前
30秒前
31秒前
英姑应助孙同学采纳,获得10
37秒前
40秒前
领导范儿应助默默采纳,获得10
42秒前
因韦热爱完成签到 ,获得积分10
44秒前
Nene完成签到 ,获得积分10
46秒前
ll完成签到,获得积分10
49秒前
过时的傲玉完成签到 ,获得积分10
53秒前
潇洒的马里奥完成签到,获得积分10
56秒前
Jankin完成签到,获得积分10
58秒前
58秒前
58秒前
58秒前
合适靖儿完成签到 ,获得积分10
1分钟前
Tonald Yang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866712
求助须知:如何正确求助?哪些是违规求助? 6426461
关于积分的说明 15654910
捐赠科研通 4981701
什么是DOI,文献DOI怎么找? 2686725
邀请新用户注册赠送积分活动 1629535
关于科研通互助平台的介绍 1587532