Mechanistic Studies of Two-Dimensional Covalent Organic Frameworks Rapidly Polymerized from Initially Homogenous Conditions

化学 成核 结晶度 共价键 单体 共价有机骨架 聚合 聚合物 阿累尼乌斯方程 微晶 降水 儿茶酚 活化能 化学工程 有机化学 结晶学 工程类 物理 气象学
作者
Brian J. Smith,William R. Dichtel
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:136 (24): 8783-8789 被引量:274
标识
DOI:10.1021/ja5037868
摘要

Covalent organic frameworks (COFs) are periodic two- and three-dimensional (2D and 3D) polymer networks with high surface areas, low densities, and designed structures. Despite intense interest in framework materials, the nucleation and growth processes of COFs, and even of more established metal-organic frameworks (MOFs), are poorly understood. The kinetics of COF growth under varied reaction conditions provides mechanistic insight needed to improve their crystallinity and rationally synthesize new materials. Such kinetic measurements are unprecedented and difficult to perform on typical heterogeneous COF reaction mixtures. Here we synthesize 2D boronate ester-linked COF-5 under conditions in which the monomers are fully soluble. These homogeneous growth conditions provide equal or better material quality compared to any previous report and enable the first rigorous studies of the early stages of COF growth. COF-5 forms within minutes, and the precipitation rate is readily quantified from optical turbidity measurements. COF-5 formation follows an Arrhenius temperature dependence between 60-90 °C with an activation energy of 22-27 kcal/mol. The measured rate law includes a second order in both boronic acid and catechol moieties, and inverse second order in MeOH concentration. A competitive monofunctional catechol slows COF-5 formation but does not redissolve already precipitated COF, indicating both dynamic covalent bond formation and irreversible precipitation. Finally, stoichiometric H2O provides a 4-fold increase in crystallite domain areas, representing the first rational link between reaction conditions and material quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是danoo发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助30
4秒前
活力妙芙完成签到 ,获得积分10
4秒前
serapy完成签到,获得积分10
4秒前
5秒前
大个应助焦恩俊采纳,获得10
6秒前
酷波er应助执着皮皮虾采纳,获得10
6秒前
小叶子发布了新的文献求助10
6秒前
6秒前
大个应助liuliu采纳,获得10
7秒前
7秒前
11完成签到,获得积分10
8秒前
8秒前
9秒前
今夜有雨完成签到 ,获得积分10
10秒前
10秒前
桐桐应助根深者叶茂采纳,获得10
10秒前
ballball233发布了新的文献求助10
11秒前
NexusExplorer应助科研通管家采纳,获得30
11秒前
kingwill发布了新的文献求助30
11秒前
克劳修斯发布了新的文献求助10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得100
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
blue完成签到,获得积分10
13秒前
研友_Z6Qrbn发布了新的文献求助10
15秒前
Panda完成签到,获得积分10
16秒前
16秒前
19秒前
天空之下发布了新的文献求助10
19秒前
19秒前
小豆芽完成签到,获得积分10
19秒前
无花果应助zxd采纳,获得10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920