Screw Dislocation Driven Growth of Nanomaterials

纳米材料 纳米技术 材料科学
作者
Fei Meng,Stephen A. Morin,Audrey Forticaux,Song Jin
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (7): 1616-1626 被引量:292
标识
DOI:10.1021/ar400003q
摘要

Nanoscience and nanotechnology impact our lives in many ways, from electronic and photonic devices to biosensors. They also hold the promise of tackling the renewable energy challenges facing us. However, one limiting scientific challenge is the effective and efficient bottom-up synthesis of nanomaterials. We can approach this core challenge in nanoscience and nanotechnology from two perspectives: (a) how to controllably grow high-quality nanomaterials with desired dimensions, morphologies, and material compositions and (b) how to produce them in a large quantity at reasonable cost. Because many chemical and physical properties of nanomaterials are size- and shape-dependent, rational syntheses of nanomaterials to achieve desirable dimensionalities and morphologies are essential to exploit their utilities. In this Account, we show that the dislocation-driven growth mechanism, where screw dislocation defects provide self-perpetuating growth steps to enable the anisotropic growth of various nanomaterials at low supersaturation, can be a powerful and versatile synthetic method for a wide variety of nanomaterials. Despite significant progress in the last two decades, nanomaterial synthesis has often remained an "art", and except for a few well-studied model systems, the growth mechanisms of many anisotropic nanostructures remain poorly understood. We strive to go beyond the empirical science ("cook-and-look") and adopt a fundamental and mechanistic perspective to the anisotropic growth of nanomaterials by first understanding the kinetics of the crystal growth process. Since most functional nanomaterials are in single-crystal form, insights from the classical crystal growth theories are crucial. We pay attention to how screw dislocations impact the growth kinetics along different crystallographic directions and how the strain energy of defected crystals influences their equilibrium shapes. Furthermore, such inquiries are supported by detailed structural investigation to identify the evidence of dislocations. The dislocation-driven growth mechanism not only can unify the various explanations behind a wide variety of exotic nanoscale morphologies but also allows the rational design of catalyst-free solution-phase syntheses that could enable the scalable and low cost production of nanomaterials necessary for large scale applications, such as solar and thermoelectric energy conversions, energy storage, and nanocomposites. In this Account, we discuss the fundamental theories of the screw dislocation driven growth of various nanostructures including one-dimensional nanowires and nanotubes, two-dimensional nanoplates, and three-dimensional hierarchical tree-like nanostructures. We then introduce the transmission electron microscopy (TEM) techniques to structurally characterize the dislocation-driven nanomaterials for future searching and identifying purposes. We summarize the guidelines for rationally designing the dislocation-driven growth and discuss specific examples to illustrate how to implement the guidelines. By highlighting our recent discoveries in the last five years, we show that dislocation growth is a general and versatile mechanism that can be used to grow a variety of nanomaterials via distinct reaction chemistry and synthetic methods. These discoveries are complemented by selected examples of anisotropic crystal growth from other researchers. The fundamental investigation and development of dislocation-driven growth of nanomaterials will create a new dimension to the rational design and synthesis of increasingly complex nanomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胜天半子关注了科研通微信公众号
刚刚
1秒前
dandelion完成签到,获得积分10
4秒前
美丽无血发布了新的文献求助10
4秒前
槿木完成签到,获得积分20
6秒前
ahan完成签到,获得积分10
10秒前
星辰大海应助hello_25baby采纳,获得10
12秒前
研友_Z6Qrbn发布了新的文献求助10
12秒前
13秒前
PengHu发布了新的文献求助30
13秒前
14秒前
14秒前
xiongqi发布了新的文献求助10
14秒前
xiying发布了新的文献求助10
16秒前
Akim应助杜兰特采纳,获得10
17秒前
傅双庆应助槿木采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
18秒前
科目三应助海洋采纳,获得30
18秒前
22秒前
MQ发布了新的文献求助10
23秒前
24秒前
tian完成签到,获得积分10
26秒前
26秒前
27秒前
单薄乐珍发布了新的文献求助20
27秒前
阳光完成签到,获得积分10
27秒前
27秒前
歪比巴卜发布了新的文献求助10
28秒前
高贵路灯发布了新的文献求助10
29秒前
杜兰特发布了新的文献求助10
30秒前
zhlh完成签到,获得积分10
30秒前
一人之下完成签到,获得积分10
35秒前
积极的小馒头应助二掌柜采纳,获得10
35秒前
大模型应助于于采纳,获得10
36秒前
37秒前
一人之下发布了新的文献求助10
39秒前
margine完成签到,获得积分10
39秒前
张羽发布了新的文献求助10
41秒前
高分求助中
LNG地下式貯槽指針(JGA指-107) 1000
LNG地上式貯槽指針 (JGA指 ; 108) 1000
Preparation and Characterization of Five Amino-Modified Hyper-Crosslinked Polymers and Performance Evaluation for Aged Transformer Oil Reclamation 700
Operative Techniques in Pediatric Orthopaedic Surgery 510
How Stories Change Us A Developmental Science of Stories from Fiction and Real Life 500
九经直音韵母研究 500
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2929877
求助须知:如何正确求助?哪些是违规求助? 2581287
关于积分的说明 6961571
捐赠科研通 2230090
什么是DOI,文献DOI怎么找? 1184889
版权声明 589565
科研通“疑难数据库(出版商)”最低求助积分说明 579942