Screw Dislocation Driven Growth of Nanomaterials

纳米材料 纳米技术 材料科学
作者
Fei Meng,Stephen A. Morin,Audrey Forticaux,Song Jin
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (7): 1616-1626 被引量:307
标识
DOI:10.1021/ar400003q
摘要

Nanoscience and nanotechnology impact our lives in many ways, from electronic and photonic devices to biosensors. They also hold the promise of tackling the renewable energy challenges facing us. However, one limiting scientific challenge is the effective and efficient bottom-up synthesis of nanomaterials. We can approach this core challenge in nanoscience and nanotechnology from two perspectives: (a) how to controllably grow high-quality nanomaterials with desired dimensions, morphologies, and material compositions and (b) how to produce them in a large quantity at reasonable cost. Because many chemical and physical properties of nanomaterials are size- and shape-dependent, rational syntheses of nanomaterials to achieve desirable dimensionalities and morphologies are essential to exploit their utilities. In this Account, we show that the dislocation-driven growth mechanism, where screw dislocation defects provide self-perpetuating growth steps to enable the anisotropic growth of various nanomaterials at low supersaturation, can be a powerful and versatile synthetic method for a wide variety of nanomaterials. Despite significant progress in the last two decades, nanomaterial synthesis has often remained an "art", and except for a few well-studied model systems, the growth mechanisms of many anisotropic nanostructures remain poorly understood. We strive to go beyond the empirical science ("cook-and-look") and adopt a fundamental and mechanistic perspective to the anisotropic growth of nanomaterials by first understanding the kinetics of the crystal growth process. Since most functional nanomaterials are in single-crystal form, insights from the classical crystal growth theories are crucial. We pay attention to how screw dislocations impact the growth kinetics along different crystallographic directions and how the strain energy of defected crystals influences their equilibrium shapes. Furthermore, such inquiries are supported by detailed structural investigation to identify the evidence of dislocations. The dislocation-driven growth mechanism not only can unify the various explanations behind a wide variety of exotic nanoscale morphologies but also allows the rational design of catalyst-free solution-phase syntheses that could enable the scalable and low cost production of nanomaterials necessary for large scale applications, such as solar and thermoelectric energy conversions, energy storage, and nanocomposites. In this Account, we discuss the fundamental theories of the screw dislocation driven growth of various nanostructures including one-dimensional nanowires and nanotubes, two-dimensional nanoplates, and three-dimensional hierarchical tree-like nanostructures. We then introduce the transmission electron microscopy (TEM) techniques to structurally characterize the dislocation-driven nanomaterials for future searching and identifying purposes. We summarize the guidelines for rationally designing the dislocation-driven growth and discuss specific examples to illustrate how to implement the guidelines. By highlighting our recent discoveries in the last five years, we show that dislocation growth is a general and versatile mechanism that can be used to grow a variety of nanomaterials via distinct reaction chemistry and synthetic methods. These discoveries are complemented by selected examples of anisotropic crystal growth from other researchers. The fundamental investigation and development of dislocation-driven growth of nanomaterials will create a new dimension to the rational design and synthesis of increasingly complex nanomaterials.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术费物完成签到 ,获得积分10
3秒前
冯不言发布了新的文献求助10
3秒前
lod完成签到,获得积分10
6秒前
身强力壮运气好完成签到,获得积分10
9秒前
谦让碧菡完成签到,获得积分10
9秒前
10秒前
fanfan完成签到 ,获得积分10
13秒前
14秒前
14秒前
komisan完成签到 ,获得积分10
17秒前
清爽语柳发布了新的文献求助10
17秒前
17秒前
18秒前
oooi完成签到 ,获得积分10
19秒前
汝桢发布了新的文献求助10
20秒前
只只完成签到,获得积分10
20秒前
fiona完成签到,获得积分0
21秒前
Rebeccaiscute完成签到 ,获得积分10
21秒前
23秒前
25秒前
seekingalone完成签到,获得积分10
25秒前
快乐小天使完成签到 ,获得积分10
26秒前
彩色炎彬发布了新的文献求助10
26秒前
浅辰完成签到,获得积分10
26秒前
糖豆完成签到,获得积分10
29秒前
幸福的鑫鹏完成签到 ,获得积分10
29秒前
爱听歌的糖豆完成签到,获得积分0
29秒前
小嘎发布了新的文献求助10
30秒前
35秒前
彭于晏应助简单的雅蕊采纳,获得10
40秒前
Orange应助hsc采纳,获得10
40秒前
冯不言发布了新的文献求助10
41秒前
GUKGO发布了新的文献求助10
41秒前
李健的小迷弟应助Fiona1990采纳,获得10
42秒前
落寞剑成完成签到 ,获得积分10
44秒前
仲夏夜之梦完成签到,获得积分10
44秒前
月见完成签到 ,获得积分10
44秒前
坦率灵槐完成签到,获得积分10
45秒前
光亮白山完成签到 ,获得积分10
46秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856740
求助须知:如何正确求助?哪些是违规求助? 6323898
关于积分的说明 15635149
捐赠科研通 4971208
什么是DOI,文献DOI怎么找? 2681237
邀请新用户注册赠送积分活动 1625183
关于科研通互助平台的介绍 1582215