材料科学
石墨烯
过电位
分解水
电化学
制氢
氧化物
电化学能量转换
化学工程
纳米材料
纳米颗粒
氢燃料
纳米技术
电极
催化作用
冶金
化学
燃料电池
物理化学
工程类
光催化
生物化学
作者
Yanan Chen,Shaomao Xu,Yuanchang Li,Rohit J. Jacob,Yudi Kuang,Boyang Liu,Yilin Wang,Glenn Pastel,L. Salamanca‐Riba,Michael R. Zachariah,Liangbing Hu
标识
DOI:10.1002/aenm.201700482
摘要
Abstract Developing low‐cost, highly efficient, and robust earth‐abundant electrocatalysts for hydrogen evolution reaction (HER) is critical for the scalable production of clean and sustainable hydrogen fuel through electrochemical water splitting. This study presents a facile approach for the synthesis of nanostructured pyrite‐phase transition metal dichalcogenides as highly active, earth‐abundant catalysts in electrochemical hydrogen production. Iron disulfide (FeS 2 ) nanoparticles are in situ loaded and stabilized on reduced graphene oxide (RGO) through a current‐induced high‐temperature rapid thermal shock (≈12 ms) of crushed iron pyrite powder. FeS 2 nanoparticles embedded in between RGO exhibit remarkably improved electrocatalytic performance for HER, achieving 10 mA cm −2 current at an overpotential as low as 139 mV versus a reversible hydrogen electrode with outstanding long‐term stability under acidic conditions. The presented strategy for the design and synthesis of highly active earth‐abundant nanomaterial catalysts paves the way for low‐cost and large‐scale electrochemical energy applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI