AntDAS: Automatic Data Analysis Strategy for UPLC–QTOF-Based Nontargeted Metabolic Profiling Analysis

化学 色谱法 软件 平滑的 质谱法 数据集 主成分分析 计算机科学 数据挖掘 分析化学(期刊) 生物系统 人工智能 计算机视觉 生物 程序设计语言
作者
Haiyan Fu,Xiaoming Guo,Yueming Zhang,Jingjing Song,Qingxia Zheng,Pingping Liu,Peng Lü,Qiansi Chen,Yong‐Jie Yu,Yuanbin She
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:89 (20): 11083-11090 被引量:43
标识
DOI:10.1021/acs.analchem.7b03160
摘要

High-quality data analysis methodology remains a bottleneck for metabolic profiling analysis based on ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry. The present work aims to address this problem by proposing a novel data analysis strategy wherein (1) chromatographic peaks in the UPLC–QTOF data set are automatically extracted by using an advanced multiscale Gaussian smoothing-based peak extraction strategy; (2) a peak annotation stage is used to cluster fragment ions that belong to the same compound. With the aid of high-resolution mass spectrometer, (3) a time-shift correction across the samples is efficiently performed by a new peak alignment method; (4) components are registered by using a newly developed adaptive network searching algorithm; (5) statistical methods, such as analysis of variance and hierarchical cluster analysis, are then used to identify the underlying marker compounds; finally, (6) compound identification is performed by matching the extracted peak information, involving high-precision m/z and retention time, against our compound library containing more than 500 plant metabolites. A manually designed mixture of 18 compounds is used to evaluate the performance of the method, and all compounds are detected under various concentration levels. The developed method is comprehensively evaluated by an extremely complex plant data set containing more than 2000 components. Results indicate that the performance of the developed method is comparable with the XCMS. The MATLAB GUI code is available from http://software.tobaccodb.org/software/antdas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Andrew02应助明理映真采纳,获得10
1秒前
酷炫小馒头完成签到,获得积分10
2秒前
4秒前
丘比特应助小烟花采纳,获得10
4秒前
5秒前
6秒前
呀呀呀发布了新的文献求助10
7秒前
柏特瑞发布了新的文献求助10
7秒前
9秒前
9秒前
本末倒纸发布了新的文献求助10
9秒前
乐观期待发布了新的文献求助10
9秒前
11秒前
青菜虫子完成签到 ,获得积分10
11秒前
11秒前
12秒前
anime完成签到 ,获得积分10
12秒前
12秒前
圈圈发布了新的文献求助10
13秒前
13秒前
15秒前
falseme发布了新的文献求助10
16秒前
16秒前
卷卷516发布了新的文献求助10
16秒前
123完成签到,获得积分10
17秒前
科目三应助JioJio采纳,获得10
17秒前
拼搏的败发布了新的文献求助10
18秒前
畅快灵薇完成签到,获得积分10
18秒前
Sin7发布了新的文献求助10
19秒前
sisi发布了新的文献求助10
19秒前
章鱼发布了新的文献求助10
20秒前
Lucas应助朱zhu采纳,获得10
20秒前
21秒前
云白发布了新的文献求助10
21秒前
强砸完成签到,获得积分10
24秒前
顾矜应助曾经二娘采纳,获得10
25秒前
26秒前
大模型应助zero采纳,获得10
26秒前
俭朴尔竹发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458698
求助须知:如何正确求助?哪些是违规求助? 3053476
关于积分的说明 9036705
捐赠科研通 2742678
什么是DOI,文献DOI怎么找? 1504506
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694494