AntDAS: Automatic Data Analysis Strategy for UPLC–QTOF-Based Nontargeted Metabolic Profiling Analysis

化学 色谱法 软件 平滑的 质谱法 数据集 主成分分析 计算机科学 数据挖掘 分析化学(期刊) 生物系统 人工智能 计算机视觉 生物 程序设计语言
作者
Haiyan Fu,Xiaoming Guo,Yueming Zhang,Jingjing Song,Qingxia Zheng,Pingping Liu,Peng Lü,Qiansi Chen,Yong‐Jie Yu,Yuanbin She
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:89 (20): 11083-11090 被引量:43
标识
DOI:10.1021/acs.analchem.7b03160
摘要

High-quality data analysis methodology remains a bottleneck for metabolic profiling analysis based on ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry. The present work aims to address this problem by proposing a novel data analysis strategy wherein (1) chromatographic peaks in the UPLC–QTOF data set are automatically extracted by using an advanced multiscale Gaussian smoothing-based peak extraction strategy; (2) a peak annotation stage is used to cluster fragment ions that belong to the same compound. With the aid of high-resolution mass spectrometer, (3) a time-shift correction across the samples is efficiently performed by a new peak alignment method; (4) components are registered by using a newly developed adaptive network searching algorithm; (5) statistical methods, such as analysis of variance and hierarchical cluster analysis, are then used to identify the underlying marker compounds; finally, (6) compound identification is performed by matching the extracted peak information, involving high-precision m/z and retention time, against our compound library containing more than 500 plant metabolites. A manually designed mixture of 18 compounds is used to evaluate the performance of the method, and all compounds are detected under various concentration levels. The developed method is comprehensively evaluated by an extremely complex plant data set containing more than 2000 components. Results indicate that the performance of the developed method is comparable with the XCMS. The MATLAB GUI code is available from http://software.tobaccodb.org/software/antdas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
97b1完成签到,获得积分10
2秒前
3秒前
上官若男应助韩豆乐采纳,获得10
3秒前
wanci应助湉湉采纳,获得10
3秒前
hehe完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
mew桑发布了新的文献求助10
5秒前
FashionBoy应助六初采纳,获得10
5秒前
5秒前
李健应助kururu采纳,获得10
5秒前
cxz完成签到,获得积分10
6秒前
CCCCCL完成签到,获得积分10
6秒前
wzx发布了新的文献求助10
6秒前
周三发布了新的文献求助10
7秒前
DoLaso发布了新的文献求助10
7秒前
英俊的铭应助钦林采纳,获得10
7秒前
9秒前
yqx发布了新的文献求助10
9秒前
顺心醉蝶完成签到 ,获得积分10
10秒前
11秒前
11秒前
CipherSage应助mgf采纳,获得10
11秒前
12秒前
12秒前
氧气泡泡发布了新的文献求助10
12秒前
大个应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
胥风应助科研通管家采纳,获得10
13秒前
仔仔在发布了新的文献求助10
13秒前
JJS完成签到,获得积分20
13秒前
14秒前
Twonej应助科研通管家采纳,获得30
14秒前
Twonej应助科研通管家采纳,获得30
14秒前
Akim应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713248
求助须知:如何正确求助?哪些是违规求助? 5214511
关于积分的说明 15270206
捐赠科研通 4865029
什么是DOI,文献DOI怎么找? 2611814
邀请新用户注册赠送积分活动 1562053
关于科研通互助平台的介绍 1519295