AntDAS: Automatic Data Analysis Strategy for UPLC–QTOF-Based Nontargeted Metabolic Profiling Analysis

化学 色谱法 软件 平滑的 质谱法 数据集 主成分分析 计算机科学 数据挖掘 分析化学(期刊) 生物系统 人工智能 计算机视觉 生物 程序设计语言
作者
Haiyan Fu,Xiaoming Guo,Yueming Zhang,Jingjing Song,Qingxia Zheng,Pingping Liu,Peng Lü,Qiansi Chen,Yong‐Jie Yu,Yuanbin She
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:89 (20): 11083-11090 被引量:43
标识
DOI:10.1021/acs.analchem.7b03160
摘要

High-quality data analysis methodology remains a bottleneck for metabolic profiling analysis based on ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry. The present work aims to address this problem by proposing a novel data analysis strategy wherein (1) chromatographic peaks in the UPLC–QTOF data set are automatically extracted by using an advanced multiscale Gaussian smoothing-based peak extraction strategy; (2) a peak annotation stage is used to cluster fragment ions that belong to the same compound. With the aid of high-resolution mass spectrometer, (3) a time-shift correction across the samples is efficiently performed by a new peak alignment method; (4) components are registered by using a newly developed adaptive network searching algorithm; (5) statistical methods, such as analysis of variance and hierarchical cluster analysis, are then used to identify the underlying marker compounds; finally, (6) compound identification is performed by matching the extracted peak information, involving high-precision m/z and retention time, against our compound library containing more than 500 plant metabolites. A manually designed mixture of 18 compounds is used to evaluate the performance of the method, and all compounds are detected under various concentration levels. The developed method is comprehensively evaluated by an extremely complex plant data set containing more than 2000 components. Results indicate that the performance of the developed method is comparable with the XCMS. The MATLAB GUI code is available from http://software.tobaccodb.org/software/antdas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
博大精森完成签到,获得积分10
刚刚
4123发布了新的文献求助10
4秒前
4秒前
hx发布了新的文献求助10
4秒前
4秒前
踏实夏烟完成签到 ,获得积分10
4秒前
逆麟发布了新的文献求助10
4秒前
5秒前
li完成签到,获得积分10
5秒前
6秒前
皮皮虾完成签到 ,获得积分10
6秒前
yang完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助150
7秒前
8秒前
lmw发布了新的文献求助10
9秒前
9秒前
xfl完成签到,获得积分10
9秒前
11秒前
11秒前
xfl发布了新的文献求助10
12秒前
科研通AI2S应助生动的芷波采纳,获得10
13秒前
FashionBoy应助沈彬彬采纳,获得10
13秒前
14秒前
领导范儿应助4123采纳,获得10
14秒前
糕糕发布了新的文献求助10
14秒前
lmw完成签到,获得积分20
14秒前
14秒前
14秒前
777分完成签到,获得积分10
15秒前
zzyx完成签到,获得积分10
15秒前
AVsecurity完成签到 ,获得积分10
16秒前
17秒前
愉快天亦发布了新的文献求助10
17秒前
SEAL完成签到,获得积分10
17秒前
18秒前
勤奋的小伙完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
Yixiaofei完成签到,获得积分10
20秒前
Orange应助苗条的老九采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4932778
求助须知:如何正确求助?哪些是违规求助? 4201141
关于积分的说明 13051677
捐赠科研通 3975102
什么是DOI,文献DOI怎么找? 2178132
邀请新用户注册赠送积分活动 1194565
关于科研通互助平台的介绍 1105881