亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities

生物多样性 稀薄(生态学) 物种丰富度 比例(比率) 地理 空间生态学 排名(信息检索) β多样性 多样性(政治) 生态学 伽马多样性 计量经济学 环境科学 地图学 生物 数学 计算机科学 政治学 法学 机器学习
作者
Jonathan M. Chase,Brian J. McGill,Daniel J. McGlinn,Felix May,Shane A. Blowes,Xiao Xiao,Tiffany M. Knight,Oliver Purschke,Nicholas J. Gotelli
标识
DOI:10.1101/275701
摘要

Abstract Because biodiversity is multidimensional and scale-dependent, it is challenging to estimate its change. However, it is unclear (1) how much scale-dependence matters for empirical studies, and (2) if it does matter, how exactly we should quantify biodiversity change. To address the first question, we analyzed studies with comparisons among multiple assemblages, and found that rarefaction curves frequently crossed, implying reversals in the ranking of species richness across spatial scales. Moreover, the most frequently measured aspect of diversity—species richness—was poorly correlated with other measures of diversity. Second, we collated studies that included spatial scale in their estimates of biodiversity change in response to ecological drivers and found frequent and strong scale-dependence, including nearly 10% of studies which showed that biodiversity changes switched directions across scales. Having established the complexity of empirical biodiversity comparisons, we describe a synthesis of methods based on rarefaction curves that allow more explicit analyses of spatial and sampling effects on biodiversity comparisons. We use a case study of nutrient additions in experimental ponds to illustrate how this multi-dimensional and multi-scale perspective informs the responses of biodiversity to ecological drivers. Statement of Authorship JC and BM conceived the study and the overall approach, and all authors participated in multiple working group meetings to develop and refine the approach. BM collected the data for the meta-analysis that led to Fig. 2,3; JC collected the data for the metaanalysis that led to Figure 4 and S1; SB and FM did the analyses for Figures 2-4; DM, FM and XX wrote the code for the analysis used for the recipe and case study in Figure 6. JC, BM and NG wrote first drafts of most sections, and all authors contributed substantially to revisions. Figure 1. A. Individual-based rarefaction curves of three hypothetical communities (labelled A,B, C) where ranked differences between communities are consistent across scales. B. Individual-based rarefaction curves of three hypothetical communities (labelled A,B, C) where rankings between communities switch because of differences in the total numbers of species, and their relative abundances. Dotted vertical lines illustrate sampling scales where rankings switch. These curves were generated using the sim_sad function from the mobsim R package (May et al. 2018). Figure 2. Bivariate relationships between N, S PIE and S for 346 communities across the 37 datasets taken from McGill (2011b)(see Appendix 1). (A) S as a function of N; (B) S as a function of S PIE . (N vs S PIE not shown). Black lines depict the relationships across studies (and correspond to R 2 fixed); colored points and lines show the relationships within studies. All axes are log-scale. Insets are histograms of the study-level slopes, with the solid line representing the slope across all studies. Gray bars indicate the study-level slope did not differ from zero, blue indicates a significant positive slope, and red indicates a significant negative slope. Figure 3. Representative rarefaction curves, the proportion of curves that crossed, and counts of how often curves crossed. (A) Rarefaction curves for different local communities within two datasets: marine invertebrates (nematodes) along a gradient from a waste plant outlet (Lambshead 1986), and trees in a Ugandan rainforest (Eggeling 1947); axes are log-transformed. (B) Counts of how many times pairs of rarefaction curves (from the same community) crossed; y-axis is on a log-scale. Data accessibility statement All data for meta-analyses and case study will be deposited in a publically available repository with DOI upon acceptance (available in link for submission).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lovexz完成签到,获得积分10
25秒前
Kumquat完成签到,获得积分10
33秒前
ABJ完成签到 ,获得积分10
1分钟前
Aphcity应助科研通管家采纳,获得20
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
玱玱发布了新的文献求助10
1分钟前
打打应助wonder123采纳,获得10
1分钟前
花落无声完成签到 ,获得积分10
1分钟前
空凌完成签到,获得积分10
1分钟前
fufufu123完成签到 ,获得积分10
2分钟前
Sun发布了新的文献求助20
2分钟前
Sun完成签到,获得积分10
2分钟前
牧沛凝完成签到 ,获得积分10
2分钟前
归海浩阑完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
王小拉完成签到 ,获得积分10
3分钟前
3分钟前
炫酷的雨发布了新的文献求助30
3分钟前
Aphcity应助科研通管家采纳,获得20
3分钟前
andrele发布了新的文献求助10
3分钟前
sandwich完成签到 ,获得积分10
3分钟前
4分钟前
decade完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
科研通AI2S应助KarleyHou采纳,获得10
5分钟前
5分钟前
5分钟前
HE完成签到,获得积分20
5分钟前
5分钟前
Curry完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
PengDai发布了新的文献求助200
7分钟前
zyj完成签到,获得积分10
7分钟前
科目三应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031402
求助须知:如何正确求助?哪些是违规求助? 4266085
关于积分的说明 13298470
捐赠科研通 4075259
什么是DOI,文献DOI怎么找? 2228986
邀请新用户注册赠送积分活动 1237546
关于科研通互助平台的介绍 1162384