Fast focus-scanning head in two-photon photoacoustic microscopy with electrically-controlled liquid lens

光学 镜头(地质) 材料科学 穿透深度 光学(聚焦) 显微镜 双光子激发显微术 焦点深度(构造) 显微镜 超声波传感器 景深 声学 物理 古生物学 荧光 生物 构造学 俯冲
作者
Yoshihisa Yamaoka,Yuka Kimura,Yoshinori Harada,Tetsuro Takamatsu,Eiji Takahashi
出处
期刊:Photons Plus Ultrasound: Imaging and Sensing 2018 被引量:3
标识
DOI:10.1117/12.2287391
摘要

Conventional one-photon photoacoustic microscopy (PAM) utilizes high-frequency components of generated photoacoustic waves to improve the depth resolution. However, to obtain optically-high resolution in PAM in the depth direction, the use of high-frequency ultrasonic waves is to be avoided. It is because that the propagation distance is shortened as the frequency of ultrasonic waves becomes high. To overcome this drawback, we have proposed and developed two-photon photoacoustic microscopy (TP-PAM). Two-photon absorption occurs only at the focus point. TPPAM does not need to use the high-frequency components of photoacoustic waves. Thus, TP-PAM can improve the penetration depth while preserving the spatial resolution. However, the image acquisition time of TP-PAM is longer than that of conventional PAM, because TP-PAM needs to scan the laser spot both in the depth and transverse directions to obtain cross-sectional images. In this paper, we have introduced a focus-tunable electrically-controlled liquid lens in TP-PAM. Instead of a mechanical stepping-motor stage, we employed electrically-controlled liquid lens so that the depth of the focus spot can be quickly changed. In our system, the imaging speed of TP-PAM using the liquid lens and one-axis stepping-motor stage was 10 times faster than that using a two-axis stepping-motor stage only. TP-PAM with focus-scanning head consisting of the liquid lens and stepping-motor stage will be a promising method to investigate the inside of living tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Eternity2025采纳,获得10
1秒前
1秒前
2秒前
吉田清子发布了新的文献求助10
2秒前
2秒前
田振扬完成签到,获得积分10
3秒前
jsh完成签到,获得积分10
3秒前
甜甜亦丝完成签到,获得积分10
3秒前
欧清完成签到,获得积分10
3秒前
parpate发布了新的文献求助10
4秒前
Owen应助林途采纳,获得10
6秒前
6秒前
renren发布了新的文献求助10
6秒前
关晚竹完成签到,获得积分20
7秒前
科研通AI5应助HughWang采纳,获得30
7秒前
8秒前
8秒前
11秒前
CipherSage应助关晚竹采纳,获得10
14秒前
14秒前
今天想要吃饭完成签到,获得积分10
15秒前
柊苒发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
AskNature完成签到,获得积分10
17秒前
孙颢然完成签到 ,获得积分10
18秒前
18秒前
陶醉雪青应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
Tourist应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
lilili应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134862
求助须知:如何正确求助?哪些是违规求助? 4335512
关于积分的说明 13506957
捐赠科研通 4173083
什么是DOI,文献DOI怎么找? 2288120
邀请新用户注册赠送积分活动 1288949
关于科研通互助平台的介绍 1229971