Live imaging analysis of human gastric epithelial spheroids reveals spontaneous rupture, rotation and fusion events

球体 融合 细胞生物学 病理 生物 化学 生物物理学 医学 遗传学 细胞培养 哲学 语言学
作者
Thomas A. Sebrell,Barkan Sidar,Rachel Bruns,Royce A. Wilkinson,Blake Wiedenheft,Paul J. Taylor,Brian A. Perrino,Linda C. Samuelson,James N. Wilking,Diane Bimczok
出处
期刊:Cell and Tissue Research [Springer Nature]
卷期号:371 (2): 293-307 被引量:24
标识
DOI:10.1007/s00441-017-2726-5
摘要

Three-dimensional cultures of primary epithelial cells including organoids, enteroids and epithelial spheroids have become increasingly popular for studies of gastrointestinal development, mucosal immunology and epithelial infection. However, little is known about the behavior of these complex cultures in their three-dimensional culture matrix. Therefore, we performed extended time-lapse imaging analysis (up to 4 days) of human gastric epithelial spheroids generated from adult tissue samples in order to visualize the dynamics of the spheroids in detail. Human gastric epithelial spheroids cultured in our laboratory grew to an average diameter of 443.9 ± 34.6 μm after 12 days, with the largest spheroids reaching diameters of >1000 μm. Live imaging analysis revealed that spheroid growth was associated with cyclic rupture of the epithelial shell at a frequency of 0.32 ± 0.1/day, which led to the release of luminal contents. Spheroid rupture usually resulted in an initial collapse, followed by spontaneous re-formation of the spheres. Moreover, spheroids frequently rotated around their axes within the Matrigel matrix, possibly propelled by basolateral pseudopodia-like formations of the epithelial cells. Interestingly, adjacent spheroids occasionally underwent luminal fusion, as visualized by injection of individual spheroids with FITC-Dextran (4 kDa). In summary, our analysis revealed unexpected dynamics in human gastric spheroids that challenge our current view of cultured epithelia as static entities and that may need to be considered when performing spheroid infection experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYH发布了新的文献求助30
刚刚
今后应助VVzza采纳,获得10
1秒前
思源应助可靠幼旋采纳,获得10
1秒前
彬彬发布了新的文献求助10
1秒前
1秒前
王金娥完成签到,获得积分10
2秒前
微微发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
Darlene完成签到,获得积分20
3秒前
CodeCraft应助纯真芙采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
童话完成签到,获得积分10
4秒前
22完成签到,获得积分10
4秒前
4秒前
zsyhcl完成签到,获得积分10
4秒前
jason完成签到 ,获得积分10
4秒前
怪怪完成签到 ,获得积分10
4秒前
5秒前
许初发布了新的文献求助10
5秒前
Nuyoah完成签到,获得积分10
5秒前
yj发布了新的文献求助10
5秒前
科研狗发布了新的文献求助10
6秒前
vc完成签到,获得积分20
6秒前
hyx7735发布了新的文献求助10
6秒前
Jasper应助lv采纳,获得10
8秒前
Jasper应助十次方采纳,获得10
8秒前
vc发布了新的文献求助10
8秒前
8秒前
AneyWinter66应助miqilin采纳,获得10
8秒前
9秒前
阔达板栗关注了科研通微信公众号
9秒前
zcz发布了新的文献求助30
9秒前
跳跃可仁完成签到,获得积分10
9秒前
10秒前
mumu完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494