Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries

电解质 锂(药物) 阳极 电池(电) 电化学 材料科学 锂离子电池 纳米技术 化学工程 电极 化学 热力学 物理化学 物理 工程类 内分泌学 功率(物理) 医学
作者
Aiping Wang,Sanket Kadam,Hong Li,Siqi Shi,Yue Qi
出处
期刊:npj computational materials [Springer Nature]
卷期号:4 (1) 被引量:1177
标识
DOI:10.1038/s41524-018-0064-0
摘要

Abstract A passivation layer called the solid electrolyte interphase (SEI) is formed on electrode surfaces from decomposition products of electrolytes. The SEI allows Li + transport and blocks electrons in order to prevent further electrolyte decomposition and ensure continued electrochemical reactions. The formation and growth mechanism of the nanometer thick SEI films are yet to be completely understood owing to their complex structure and lack of reliable in situ experimental techniques. Significant advances in computational methods have made it possible to predictively model the fundamentals of SEI. This review aims to give an overview of state-of-the-art modeling progress in the investigation of SEI films on the anodes, ranging from electronic structure calculations to mesoscale modeling, covering the thermodynamics and kinetics of electrolyte reduction reactions, SEI formation, modification through electrolyte design, correlation of SEI properties with battery performance, and the artificial SEI design. Multi-scale simulations have been summarized and compared with each other as well as with experiments. Computational details of the fundamental properties of SEI, such as electron tunneling, Li-ion transport, chemical/mechanical stability of the bulk SEI and electrode/(SEI/) electrolyte interfaces have been discussed. This review shows the potential of computational approaches in the deconvolution of SEI properties and design of artificial SEI. We believe that computational modeling can be integrated with experiments to complement each other and lead to a better understanding of the complex SEI for the development of a highly efficient battery in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZBX发布了新的文献求助10
刚刚
格格巫发布了新的文献求助10
1秒前
都是发布了新的文献求助10
2秒前
思思发布了新的文献求助10
3秒前
smile完成签到,获得积分10
4秒前
顺顺欣完成签到 ,获得积分10
5秒前
今后应助都是采纳,获得10
6秒前
6秒前
大个应助QYW采纳,获得10
7秒前
SciGPT应助嘟嘟采纳,获得10
8秒前
庚大屁发布了新的文献求助10
9秒前
严仕国完成签到,获得积分10
9秒前
10秒前
迷路世立完成签到,获得积分10
11秒前
赘婿应助早早采纳,获得10
12秒前
糊糊完成签到 ,获得积分20
12秒前
luoqin完成签到,获得积分10
13秒前
14秒前
庚大屁完成签到,获得积分10
14秒前
15秒前
复杂的扬完成签到,获得积分10
15秒前
Migue应助爱听歌凤灵采纳,获得10
15秒前
黎乐乐完成签到 ,获得积分10
15秒前
smile发布了新的文献求助10
16秒前
Forever完成签到,获得积分10
18秒前
zhangxiangwei完成签到,获得积分10
18秒前
fldud0发布了新的文献求助10
18秒前
19秒前
19秒前
贾宝玉完成签到,获得积分10
20秒前
sumugeng完成签到,获得积分10
20秒前
信仰完成签到,获得积分10
21秒前
平淡的文龙完成签到,获得积分10
22秒前
洪武发布了新的文献求助10
22秒前
喜欢月亮完成签到 ,获得积分10
22秒前
23秒前
科研通AI2S应助研友_nPol2L采纳,获得10
23秒前
24秒前
25秒前
无名花生完成签到 ,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137328
求助须知:如何正确求助?哪些是违规求助? 2788413
关于积分的说明 7786262
捐赠科研通 2444571
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625680
版权声明 601023