Review of AI applications in harmonic analysis in power systems

谐波 计算机科学 电力系统 总谐波失真 波形 人工神经网络 人工智能 电子工程 机器学习 谐波 背景(考古学) 功率(物理) 工程类 电气工程 电信 雷达 电压 物理 古生物学 生物 量子力学
作者
Ahmadreza Eslami,Michael Negnevitsky,Evan Franklin,Sarah Lyden
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:154: 111897-111897 被引量:72
标识
DOI:10.1016/j.rser.2021.111897
摘要

Harmonics and waveform distortion is a significant power quality problem in modern power systems with high penetration of Renewable Energy Sources (RES). This problem has attracted more attention in recent decades, owing to the increasing integration of power electronic devices and nonlinear loads into power systems. In this paper, Artificial Intelligence (AI) techniques used in different aspects of analyzing harmonics in electrical power networks are reviewed. The tasks of spectrum analysis and waveform estimation or prediction, harmonic source classification, harmonic source location and estimation, determination of harmonic source contributions, harmonic data clustering, filter-based harmonic elimination, and Distributed Generation (DG) hosting capacity in the context of harmonics are considered. The applications of AI in these tasks have been addressed within the literature and are reviewed in this paper. Different AI techniques applied in the study of harmonics such as artificial neural networks, fuzzy systems, support vector machine and decision tree are reviewed. AI techniques mostly outperformed traditional methods in harmonic analysis, particularly under varying operating condition. However, there is still room for improvement regarding the use of combinations of techniques, ensemble learning, optimal structures, training algorithms and further comprehension. This review provides researchers with an insight into research trends in harmonic analysis and outlines opportunities for further research on this increasingly important topic. • Review of AI applications in different tasks regarding harmonic analysis. • Comprehensive search and detailed evaluation of the methods both in text and in tabular form. • Evaluation of pros and cons of different AI methods by adopting a critical review approach. • Statistics of the research trend in AI techniques applied to harmonic analysis. • Recommendations for AI application in harmonic analysis.and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈哈完成签到,获得积分20
刚刚
1秒前
1秒前
gcs007完成签到,获得积分10
2秒前
英俊的铭应助322628采纳,获得10
3秒前
Ava应助哈哈哈采纳,获得10
3秒前
3秒前
4秒前
4秒前
6秒前
1DAM发布了新的文献求助20
6秒前
7秒前
redstone完成签到,获得积分10
8秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
小黑鼠发布了新的文献求助10
10秒前
11秒前
顾矜应助起不出名字3采纳,获得10
12秒前
vsbsjj完成签到,获得积分10
13秒前
15秒前
妖精很通完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
刘碰蛋完成签到,获得积分10
17秒前
322628发布了新的文献求助10
17秒前
17秒前
17秒前
专注的问寒应助明亮惜天采纳,获得50
17秒前
18秒前
AN应助Feng采纳,获得30
19秒前
21秒前
科目三应助妖精很通采纳,获得10
21秒前
雾非雾完成签到,获得积分10
21秒前
chenyuns发布了新的文献求助10
23秒前
包容的雨泽发布了新的文献求助100
23秒前
小豆包发布了新的文献求助30
24秒前
拼搏的帽子完成签到 ,获得积分10
24秒前
钟梓袄发布了新的文献求助10
25秒前
26秒前
充电宝应助小罗不吃芋头采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778959
求助须知:如何正确求助?哪些是违规求助? 5644592
关于积分的说明 15450766
捐赠科研通 4910444
什么是DOI,文献DOI怎么找? 2642671
邀请新用户注册赠送积分活动 1590372
关于科研通互助平台的介绍 1544741