Review of AI applications in harmonic analysis in power systems

谐波 计算机科学 电力系统 总谐波失真 波形 人工神经网络 人工智能 电子工程 机器学习 谐波 背景(考古学) 功率(物理) 工程类 电气工程 电信 雷达 电压 物理 古生物学 生物 量子力学
作者
Ahmadreza Eslami,Michael Negnevitsky,Evan Franklin,Sarah Lyden
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:154: 111897-111897 被引量:72
标识
DOI:10.1016/j.rser.2021.111897
摘要

Harmonics and waveform distortion is a significant power quality problem in modern power systems with high penetration of Renewable Energy Sources (RES). This problem has attracted more attention in recent decades, owing to the increasing integration of power electronic devices and nonlinear loads into power systems. In this paper, Artificial Intelligence (AI) techniques used in different aspects of analyzing harmonics in electrical power networks are reviewed. The tasks of spectrum analysis and waveform estimation or prediction, harmonic source classification, harmonic source location and estimation, determination of harmonic source contributions, harmonic data clustering, filter-based harmonic elimination, and Distributed Generation (DG) hosting capacity in the context of harmonics are considered. The applications of AI in these tasks have been addressed within the literature and are reviewed in this paper. Different AI techniques applied in the study of harmonics such as artificial neural networks, fuzzy systems, support vector machine and decision tree are reviewed. AI techniques mostly outperformed traditional methods in harmonic analysis, particularly under varying operating condition. However, there is still room for improvement regarding the use of combinations of techniques, ensemble learning, optimal structures, training algorithms and further comprehension. This review provides researchers with an insight into research trends in harmonic analysis and outlines opportunities for further research on this increasingly important topic. • Review of AI applications in different tasks regarding harmonic analysis. • Comprehensive search and detailed evaluation of the methods both in text and in tabular form. • Evaluation of pros and cons of different AI methods by adopting a critical review approach. • Statistics of the research trend in AI techniques applied to harmonic analysis. • Recommendations for AI application in harmonic analysis.and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YUYU芋头完成签到,获得积分10
1秒前
1秒前
1秒前
自由访梦完成签到,获得积分20
1秒前
libaokuu完成签到,获得积分10
2秒前
充电宝应助陈秋妮采纳,获得10
3秒前
3秒前
3秒前
4秒前
在水一方应助意大利采纳,获得20
4秒前
yueban完成签到,获得积分10
5秒前
哈哈哈发布了新的文献求助10
5秒前
果果航发布了新的文献求助10
5秒前
LKT发布了新的文献求助10
5秒前
6秒前
7秒前
常常完成签到,获得积分10
8秒前
星海极光发布了新的文献求助10
8秒前
augenstern发布了新的文献求助10
8秒前
xuedun应助小七采纳,获得10
8秒前
田様应助小七采纳,获得10
8秒前
慕青应助小七采纳,获得10
8秒前
FashionBoy应助小七采纳,获得10
8秒前
Owen应助小七采纳,获得10
8秒前
Ava应助小七采纳,获得10
8秒前
9秒前
威武好吐司完成签到,获得积分10
9秒前
黄豆酱发布了新的文献求助10
10秒前
义气丹雪应助鲸鱼打滚采纳,获得10
10秒前
12秒前
犹豫的南完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
zhengyalan发布了新的文献求助10
15秒前
呜呼啦呼发布了新的文献求助10
15秒前
包容海亦完成签到,获得积分10
17秒前
丘比特应助XY采纳,获得10
17秒前
18秒前
kun发布了新的文献求助10
18秒前
lic完成签到,获得积分10
18秒前
FF完成签到 ,获得积分10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705070
求助须知:如何正确求助?哪些是违规求助? 5160498
关于积分的说明 15243798
捐赠科研通 4858886
什么是DOI,文献DOI怎么找? 2607466
邀请新用户注册赠送积分活动 1558571
关于科研通互助平台的介绍 1516188