Review of AI applications in harmonic analysis in power systems

谐波 计算机科学 电力系统 总谐波失真 波形 人工神经网络 人工智能 电子工程 机器学习 谐波 背景(考古学) 功率(物理) 工程类 电气工程 电信 雷达 电压 物理 古生物学 生物 量子力学
作者
Ahmadreza Eslami,Michael Negnevitsky,Evan Franklin,Sarah Lyden
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:154: 111897-111897 被引量:72
标识
DOI:10.1016/j.rser.2021.111897
摘要

Harmonics and waveform distortion is a significant power quality problem in modern power systems with high penetration of Renewable Energy Sources (RES). This problem has attracted more attention in recent decades, owing to the increasing integration of power electronic devices and nonlinear loads into power systems. In this paper, Artificial Intelligence (AI) techniques used in different aspects of analyzing harmonics in electrical power networks are reviewed. The tasks of spectrum analysis and waveform estimation or prediction, harmonic source classification, harmonic source location and estimation, determination of harmonic source contributions, harmonic data clustering, filter-based harmonic elimination, and Distributed Generation (DG) hosting capacity in the context of harmonics are considered. The applications of AI in these tasks have been addressed within the literature and are reviewed in this paper. Different AI techniques applied in the study of harmonics such as artificial neural networks, fuzzy systems, support vector machine and decision tree are reviewed. AI techniques mostly outperformed traditional methods in harmonic analysis, particularly under varying operating condition. However, there is still room for improvement regarding the use of combinations of techniques, ensemble learning, optimal structures, training algorithms and further comprehension. This review provides researchers with an insight into research trends in harmonic analysis and outlines opportunities for further research on this increasingly important topic. • Review of AI applications in different tasks regarding harmonic analysis. • Comprehensive search and detailed evaluation of the methods both in text and in tabular form. • Evaluation of pros and cons of different AI methods by adopting a critical review approach. • Statistics of the research trend in AI techniques applied to harmonic analysis. • Recommendations for AI application in harmonic analysis.and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
啦啦啦发布了新的文献求助10
1秒前
刘冰芸完成签到,获得积分10
1秒前
2秒前
3秒前
lxk55555发布了新的文献求助10
3秒前
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
乐观之卉完成签到,获得积分10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
chong0919完成签到,获得积分10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
Lucas应助Alex采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
lkk完成签到,获得积分10
4秒前
今后应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
Apricity应助命苦的牛马采纳,获得10
4秒前
细腻砖头应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
笨笨百招应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
Ava应助汤姆采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619177
求助须知:如何正确求助?哪些是违规求助? 4703952
关于积分的说明 14925213
捐赠科研通 4759305
什么是DOI,文献DOI怎么找? 2550439
邀请新用户注册赠送积分活动 1513156
关于科研通互助平台的介绍 1474401