已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pedestrian and Vehicle Detection in Autonomous Vehicle Perception Systems—A Review

行人 计算机科学 行人检测 感知 目标检测 人工智能 交通拥挤 人机交互 计算机视觉 机器学习 运输工程 工程类 模式识别(心理学) 生物 神经科学
作者
Luiz G. Galvão,Maysam Abbod,Tatiana Kalganova,Vasile Palade,M. Nazmul Huda
出处
期刊:Sensors [MDPI AG]
卷期号:21 (21): 7267-7267 被引量:35
标识
DOI:10.3390/s21217267
摘要

Autonomous Vehicles (AVs) have the potential to solve many traffic problems, such as accidents, congestion and pollution. However, there are still challenges to overcome, for instance, AVs need to accurately perceive their environment to safely navigate in busy urban scenarios. The aim of this paper is to review recent articles on computer vision techniques that can be used to build an AV perception system. AV perception systems need to accurately detect non-static objects and predict their behaviour, as well as to detect static objects and recognise the information they are providing. This paper, in particular, focuses on the computer vision techniques used to detect pedestrians and vehicles. There have been many papers and reviews on pedestrians and vehicles detection so far. However, most of the past papers only reviewed pedestrian or vehicle detection separately. This review aims to present an overview of the AV systems in general, and then review and investigate several detection computer vision techniques for pedestrians and vehicles. The review concludes that both traditional and Deep Learning (DL) techniques have been used for pedestrian and vehicle detection; however, DL techniques have shown the best results. Although good detection results have been achieved for pedestrians and vehicles, the current algorithms still struggle to detect small, occluded, and truncated objects. In addition, there is limited research on how to improve detection performance in difficult light and weather conditions. Most of the algorithms have been tested on well-recognised datasets such as Caltech and KITTI; however, these datasets have their own limitations. Therefore, this paper recommends that future works should be implemented on more new challenging datasets, such as PIE and BDD100K.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hl发布了新的文献求助10
1秒前
anpabc完成签到,获得积分0
2秒前
Jasper应助更深的蓝911采纳,获得10
4秒前
不安青牛应助auguste采纳,获得10
6秒前
快乐书桃发布了新的文献求助10
7秒前
雪白丸子完成签到,获得积分10
8秒前
9秒前
情怀应助Sybil采纳,获得10
10秒前
11秒前
11秒前
搜集达人应助学术妲己采纳,获得10
16秒前
快乐书桃完成签到,获得积分20
16秒前
Namlyn完成签到,获得积分10
17秒前
冷静剑成发布了新的文献求助10
18秒前
bkagyin应助开心的飞双采纳,获得10
19秒前
难道我是西谷西完成签到,获得积分10
20秒前
20秒前
Orange应助xiaoyi采纳,获得10
21秒前
华仔应助快乐书桃采纳,获得10
22秒前
yyy发布了新的文献求助30
23秒前
野子发布了新的文献求助10
24秒前
李健的小迷弟应助xiao楓采纳,获得10
24秒前
多年以后完成签到,获得积分10
28秒前
28秒前
29秒前
桐桐应助野子采纳,获得10
29秒前
Eden完成签到,获得积分10
31秒前
昭荃完成签到 ,获得积分0
34秒前
34秒前
羊羊吃芋圆完成签到,获得积分10
34秒前
35秒前
间质发布了新的文献求助200
39秒前
long完成签到,获得积分20
40秒前
彭于晏应助cc采纳,获得10
42秒前
自然剑完成签到,获得积分10
42秒前
Bokuto完成签到,获得积分10
42秒前
XIA发布了新的文献求助10
43秒前
44秒前
ddddd完成签到,获得积分10
44秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3407613
求助须知:如何正确求助?哪些是违规求助? 3012162
关于积分的说明 8852673
捐赠科研通 2699304
什么是DOI,文献DOI怎么找? 1479939
科研通“疑难数据库(出版商)”最低求助积分说明 684111
邀请新用户注册赠送积分活动 678358