Remaining useful life prediction of bearing based on stacked autoencoder and recurrent neural network

方位(导航) 人工神经网络 自编码 断层(地质) 试验数据 工程类 计算机科学 瓶颈 人工智能 数据挖掘 模式识别(心理学) 软件工程 地质学 嵌入式系统 地震学
作者
Tian Han,Jiachen Pang,Andy Tan
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:61: 576-591 被引量:65
标识
DOI:10.1016/j.jmsy.2021.10.011
摘要

Remaining Useful Life (RUL) prediction play a crucial part in bearing maintenance, which directly affects the production efficiency and safety of equipment. Moreover, the accuracy of the prediction model is constrained by the feature extraction process and full life data of bearings. In this paper, the life prediction method of faulty rolling bearing with limited data is presented including degradation state model and RUL prediction model. In order to obtain health indication (HI) without human interference in the degradation state modeling stage, the bottleneck structure of Stacked Autoencoder (SAE) is utilized to fuse the four selected features into one HI using Intelligent Maintenance Systems (IMS) bearing dataset as training sample. In RUL prediction model, the Long Short-Term Memory (LSTM) neural network is carried out to establish the model with Standard deviation (Std) input and HI training label. In order to solve the problem of large training error caused by insufficient data in the failure stage of bearing acceleration test, the third-order spline curve interpolation is utilized to enhance the data points. Through parameter analysis, the RMSE and MAE of the test set on the prediction model are 0.032582 and 0.024038, respectively. Furthermore, the effectiveness of the proposed method is further validated by dataset from Case Western Reserve University (CWRU) with different bearing fault degrees. The analysis indicates that the RUL prediction of bearing fault data is consistent with the size of artificial added faults, that is,the more severe the fault the shorter the time of remaining life. The results validate that the proposed method can effectively extract the bearing health state by incorporating feature fusion and establish accurately prediction model for bearing remaining life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺明杰发布了新的文献求助10
刚刚
冲冲冲发布了新的文献求助20
刚刚
刚刚
彩色毛豆发布了新的文献求助10
1秒前
米米发布了新的文献求助10
1秒前
2秒前
小太阳发布了新的文献求助10
3秒前
阔达千萍完成签到,获得积分10
3秒前
3秒前
浮晨完成签到,获得积分10
3秒前
Niu完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
1111发布了新的文献求助10
4秒前
yangyang2021发布了新的文献求助10
5秒前
5秒前
不是大佬应助2号采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
精灵梦完成签到,获得积分10
6秒前
6秒前
蒜瓣雪糕完成签到,获得积分20
6秒前
7秒前
7秒前
星辰大海应助取个名儿吧采纳,获得10
7秒前
温小满完成签到 ,获得积分10
7秒前
7秒前
rwewe发布了新的文献求助10
7秒前
7秒前
大个应助米米采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
思源应助陈志强采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661137
求助须知:如何正确求助?哪些是违规求助? 4837217
关于积分的说明 15093992
捐赠科研通 4819845
什么是DOI,文献DOI怎么找? 2579617
邀请新用户注册赠送积分活动 1533925
关于科研通互助平台的介绍 1492648