Remaining useful life prediction of bearing based on stacked autoencoder and recurrent neural network

方位(导航) 人工神经网络 自编码 断层(地质) 试验数据 工程类 计算机科学 瓶颈 人工智能 数据挖掘 模式识别(心理学) 软件工程 地质学 嵌入式系统 地震学
作者
Tian Han,Jiachen Pang,Andy Tan
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:61: 576-591 被引量:65
标识
DOI:10.1016/j.jmsy.2021.10.011
摘要

Remaining Useful Life (RUL) prediction play a crucial part in bearing maintenance, which directly affects the production efficiency and safety of equipment. Moreover, the accuracy of the prediction model is constrained by the feature extraction process and full life data of bearings. In this paper, the life prediction method of faulty rolling bearing with limited data is presented including degradation state model and RUL prediction model. In order to obtain health indication (HI) without human interference in the degradation state modeling stage, the bottleneck structure of Stacked Autoencoder (SAE) is utilized to fuse the four selected features into one HI using Intelligent Maintenance Systems (IMS) bearing dataset as training sample. In RUL prediction model, the Long Short-Term Memory (LSTM) neural network is carried out to establish the model with Standard deviation (Std) input and HI training label. In order to solve the problem of large training error caused by insufficient data in the failure stage of bearing acceleration test, the third-order spline curve interpolation is utilized to enhance the data points. Through parameter analysis, the RMSE and MAE of the test set on the prediction model are 0.032582 and 0.024038, respectively. Furthermore, the effectiveness of the proposed method is further validated by dataset from Case Western Reserve University (CWRU) with different bearing fault degrees. The analysis indicates that the RUL prediction of bearing fault data is consistent with the size of artificial added faults, that is,the more severe the fault the shorter the time of remaining life. The results validate that the proposed method can effectively extract the bearing health state by incorporating feature fusion and establish accurately prediction model for bearing remaining life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fd完成签到,获得积分10
刚刚
SH完成签到,获得积分10
刚刚
刚刚
幽默孤菱完成签到,获得积分10
刚刚
Yu完成签到,获得积分10
刚刚
刚刚
王乾宇发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI6.1应助why采纳,获得10
1秒前
北辰发布了新的文献求助10
1秒前
sunnn发布了新的文献求助10
1秒前
星渊应助红影采纳,获得10
1秒前
科研通AI6.1应助梦天采纳,获得10
1秒前
baozeNG发布了新的文献求助10
1秒前
灰光呀发布了新的文献求助10
1秒前
2秒前
2秒前
丘比特应助腼腆的斓采纳,获得10
3秒前
Orange应助saluo采纳,获得10
3秒前
舒服的善若完成签到 ,获得积分10
3秒前
善学以致用应助冰可乐采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
机灵的安南完成签到 ,获得积分10
4秒前
虚心绿草完成签到,获得积分10
4秒前
DANK1NG发布了新的文献求助10
5秒前
buqi完成签到,获得积分10
5秒前
5秒前
Orange应助哈哈哈采纳,获得30
5秒前
6秒前
6秒前
猪猪hero发布了新的文献求助30
6秒前
天天都肚子疼完成签到,获得积分10
6秒前
6秒前
困困发布了新的文献求助10
6秒前
slx发布了新的文献求助10
7秒前
纯懿发布了新的文献求助30
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805