方位(导航)
人工神经网络
自编码
断层(地质)
试验数据
工程类
计算机科学
瓶颈
人工智能
数据挖掘
模式识别(心理学)
地震学
嵌入式系统
地质学
软件工程
作者
Tian Han,Jiachen Pang,Andy Tan
标识
DOI:10.1016/j.jmsy.2021.10.011
摘要
Remaining Useful Life (RUL) prediction play a crucial part in bearing maintenance, which directly affects the production efficiency and safety of equipment. Moreover, the accuracy of the prediction model is constrained by the feature extraction process and full life data of bearings. In this paper, the life prediction method of faulty rolling bearing with limited data is presented including degradation state model and RUL prediction model. In order to obtain health indication (HI) without human interference in the degradation state modeling stage, the bottleneck structure of Stacked Autoencoder (SAE) is utilized to fuse the four selected features into one HI using Intelligent Maintenance Systems (IMS) bearing dataset as training sample. In RUL prediction model, the Long Short-Term Memory (LSTM) neural network is carried out to establish the model with Standard deviation (Std) input and HI training label. In order to solve the problem of large training error caused by insufficient data in the failure stage of bearing acceleration test, the third-order spline curve interpolation is utilized to enhance the data points. Through parameter analysis, the RMSE and MAE of the test set on the prediction model are 0.032582 and 0.024038, respectively. Furthermore, the effectiveness of the proposed method is further validated by dataset from Case Western Reserve University (CWRU) with different bearing fault degrees. The analysis indicates that the RUL prediction of bearing fault data is consistent with the size of artificial added faults, that is,the more severe the fault the shorter the time of remaining life. The results validate that the proposed method can effectively extract the bearing health state by incorporating feature fusion and establish accurately prediction model for bearing remaining life.
科研通智能强力驱动
Strongly Powered by AbleSci AI