幻觉
计算机科学
人工智能
班级(哲学)
特征(语言学)
模式识别(心理学)
不相交集
特征提取
公制(单位)
机器学习
数学
运营管理
语言学
组合数学
哲学
经济
作者
Chia-Ching Lin,Hsin-Li Chu,Yu-Chiang Frank Wang,Chin‐Laung Lei
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2021-01-01
卷期号:30: 9245-9258
被引量:12
标识
DOI:10.1109/tip.2021.3124322
摘要
Few-shot learning (FSL) refers to the learning task that generalizes from base to novel concepts with only few examples observed during training. One intuitive FSL approach is to hallucinate additional training samples for novel categories. While this is typically done by learning from a disjoint set of base categories with sufficient amount of training data, most existing works did not fully exploit the intra-class information from base categories, and thus there is no guarantee that the hallucinated data would represent the class of interest accordingly. In this paper, we propose Feature Disentanglement and Hallucination Network (FDH-Net), which jointly performs feature disentanglement and hallucination for FSL purposes. More specifically, our FDH-Net is able to disentangle input visual data into class-specific and appearance-specific features. With both data recovery and classification constraints, hallucination of image features for novel categories using appearance information extracted from base categories can be achieved. We perform extensive experiments on two fine-grained datasets (CUB and FLO) and two coarse-grained ones (mini-ImageNet and CIFAR- 100). The results confirm that our framework performs favorably against state-of-the-art metric-learning and hallucination-based FSL models.
科研通智能强力驱动
Strongly Powered by AbleSci AI