Efficient hyperparameter-tuned machine learning approach for estimation of supercapacitor performance attributes

超级电容器 超参数 均方误差 电容 计算机科学 随机森林 人工神经网络 材料科学 机器学习 人工智能 数学 电极 统计 化学 物理化学
作者
Syed Ishtiyaq Ahmed,Sreevatsan Radhakrishnan,Binoy B. Nair,Rajagopalan Thiruvengadathan
出处
期刊:Journal of physics communications [IOP Publishing]
卷期号:5 (11): 115011-115011 被引量:16
标识
DOI:10.1088/2399-6528/ac3574
摘要

Abstract Recent years have witnessed the rise of supercapacitor as effective energy storage device. Specifically, carbon-based electrodes have been experimentally well studied and used in the fabrication of supercapacitors due to their excellent electrochemical properties. Recent publications have reported the use of Machine Learning (ML) techniques to study the correlation between the structural features of electrodes and supercapacitor performance metrics. However, the poor R-squared values (i.e., large deviations from the ideal value of unity) and large RMSE values reported in these works reflect the lack of accurate models’ development. This work reports the development and utilization of highly tuned and efficient ML models using hyperparameter tuning, that give insights into correlation between the structural features of electrodes and supercapacitor performance metrics namely specific capacitance, power density and energy density. Artificial Neural Networks (ANN) and Random Forest (RF) models have been employed to predict the various in-operando performance metrics of carbon-based supercapacitors based on three input features such as mesopore surface area, micropore surface area and scan rate. Experimentally measured values of these parameters used for training and testing these two models have been extracted from a set of research papers reported in literature. The optimization techniques and various tuning methodologies adopted for identifying model hyperparameters are discussed in this paper. The R 2 values obtained for prediction of specific capacitance, power density and energy density using RF model are in the range from 0.8612 to 0.9353 respectively, while the RMSE values of the above parameters are 18.651, 0.2732 and 0.5764 for respective input parameters. Similarly, the R 2 values obtained for prediction of specific capacitance, power density and energy density using ANN model are in the range from 0.9211 to 0.9644 respectively, while the RMSE values of the above parameters are 18.132, 0.1601 and 0.5764 for respective input parameters. Thus, the highly tuned ANN and RF models depict higher R-squared and lower RMSE values in comparison to those previously reported in literature, thereby demonstrating the importance of hyperparameter tuning and optimization in building accurate and reliable computational models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张大鹅完成签到,获得积分10
1秒前
打打应助儒雅的柠檬采纳,获得10
1秒前
Hello应助LYJ采纳,获得10
1秒前
受伤南霜完成签到,获得积分10
1秒前
2秒前
3秒前
科研通AI5应助zzl采纳,获得10
3秒前
3秒前
ysc完成签到,获得积分10
4秒前
星辰大海应助alooof采纳,获得10
4秒前
科研通AI2S应助张大鹅采纳,获得10
5秒前
开放穆发布了新的文献求助10
6秒前
一碗冷的粥完成签到,获得积分10
6秒前
lq_niu完成签到,获得积分10
6秒前
李爱国应助呼呼采纳,获得10
8秒前
香蕉觅云应助冷静1等待采纳,获得10
8秒前
9秒前
LYJ完成签到,获得积分10
11秒前
12秒前
英俊的铭应助郑总采纳,获得30
12秒前
14秒前
斑马兽完成签到,获得积分10
14秒前
张流筝完成签到 ,获得积分10
14秒前
可爱采梦发布了新的文献求助10
15秒前
16秒前
18秒前
小怪兽发布了新的文献求助10
19秒前
LYJ发布了新的文献求助10
19秒前
21秒前
kerr完成签到 ,获得积分10
22秒前
NexusExplorer应助yinyiming采纳,获得10
23秒前
23秒前
李李完成签到,获得积分10
24秒前
24秒前
24秒前
晓晓发布了新的文献求助10
24秒前
李爱国应助dild采纳,获得10
25秒前
郑总发布了新的文献求助30
27秒前
27秒前
共享精神应助小怪兽采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514561
求助须知:如何正确求助?哪些是违规求助? 3096931
关于积分的说明 9233203
捐赠科研通 2791934
什么是DOI,文献DOI怎么找? 1532173
邀请新用户注册赠送积分活动 711816
科研通“疑难数据库(出版商)”最低求助积分说明 707031