Traditional Chinese Medicine Automated Diagnosis Based on Knowledge Graph Reasoning

计算机科学 图形 贝叶斯定理 人工智能 路径(计算) 临床实习 机器学习 医学 自然语言处理 理论计算机科学 物理疗法 贝叶斯概率 程序设计语言
作者
Walid El‐Shafai,Amira A. Mahmoud,El‐Sayed M. El‐Rabaie,Taha E. Taha,O. Zahran,Adel S. El‐Fishawy,Mohammed Abd‐Elnaby,Fathi E. Abd El‐Samie
出处
期刊:Computers, materials & continua 卷期号:71 (1): 159-170 被引量:15
标识
DOI:10.32604/cmc.2022.017295
摘要

Syndrome differentiation is the core diagnosis method of Traditional Chinese Medicine (TCM). We propose a method that simulates syndrome differentiation through deductive reasoning on a knowledge graph to achieve automated diagnosis in TCM. We analyze the reasoning path patterns from symptom to syndromes on the knowledge graph. There are two kinds of path patterns in the knowledge graph: one-hop and two-hop. The one-hop path pattern maps the symptom to syndromes immediately. The two-hop path pattern maps the symptom to syndromes through the nature of disease, etiology, and pathomechanism to support the diagnostic reasoning. Considering the different support strengths for the knowledge paths in reasoning, we design a dynamic weight mechanism. We utilize Naïve Bayes and TF-IDF to implement the reasoning method and the weighted score calculation. The proposed method reasons the syndrome results by calculating the possibility according to the weighted score of the path in the knowledge graph based on the reasoning path patterns. We evaluate the method with clinical records and clinical practice in hospitals. The preliminary results suggest that the method achieves high performance and can help TCM doctors make better diagnosis decisions in practice. Meanwhile, the method is robust and explainable under the guide of the knowledge graph. It could help TCM physicians, especially primary physicians in rural areas, and provide clinical decision support in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助zhangling采纳,获得10
刚刚
852应助HHHAN采纳,获得10
1秒前
up发布了新的文献求助10
2秒前
giao完成签到,获得积分10
2秒前
华仔应助墨鱼烩饭采纳,获得10
3秒前
iNk应助木cheng采纳,获得10
4秒前
4秒前
科研通AI2S应助Stella采纳,获得10
6秒前
缥缈逍遥完成签到 ,获得积分10
7秒前
陈易发布了新的文献求助10
8秒前
8秒前
将将发布了新的文献求助30
10秒前
细心孤丹完成签到,获得积分10
10秒前
雨的前世完成签到,获得积分10
11秒前
无花果应助八大山人采纳,获得10
11秒前
喵喵完成签到,获得积分10
12秒前
12秒前
12秒前
NexusExplorer应助dongli0616采纳,获得30
12秒前
13秒前
熊熊完成签到 ,获得积分10
15秒前
大鹏发布了新的文献求助10
15秒前
快哒哒哒完成签到,获得积分10
18秒前
脑洞疼应助cmclara采纳,获得10
18秒前
上官若男应助LC采纳,获得10
19秒前
19秒前
英姑应助up采纳,获得30
21秒前
21秒前
时尚的立诚完成签到,获得积分10
22秒前
丘比特应助ttt采纳,获得10
22秒前
24秒前
25秒前
八大山人发布了新的文献求助10
26秒前
今天你学习了吗完成签到,获得积分10
27秒前
27秒前
ZG完成签到,获得积分10
28秒前
小马甲应助123采纳,获得10
30秒前
31秒前
可可萝oxo发布了新的文献求助10
31秒前
陈预立发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228