Traditional Chinese Medicine Automated Diagnosis Based on Knowledge Graph Reasoning

计算机科学 图形 贝叶斯定理 人工智能 路径(计算) 临床实习 机器学习 医学 自然语言处理 理论计算机科学 物理疗法 贝叶斯概率 程序设计语言
作者
Walid El‐Shafai,Amira A. Mahmoud,El‐Sayed M. El‐Rabaie,Taha E. Taha,O. Zahran,Adel S. El‐Fishawy,Mohammed Abd‐Elnaby,Fathi E. Abd El‐Samie
出处
期刊:Computers, materials & continua 卷期号:71 (1): 159-170 被引量:15
标识
DOI:10.32604/cmc.2022.017295
摘要

Syndrome differentiation is the core diagnosis method of Traditional Chinese Medicine (TCM). We propose a method that simulates syndrome differentiation through deductive reasoning on a knowledge graph to achieve automated diagnosis in TCM. We analyze the reasoning path patterns from symptom to syndromes on the knowledge graph. There are two kinds of path patterns in the knowledge graph: one-hop and two-hop. The one-hop path pattern maps the symptom to syndromes immediately. The two-hop path pattern maps the symptom to syndromes through the nature of disease, etiology, and pathomechanism to support the diagnostic reasoning. Considering the different support strengths for the knowledge paths in reasoning, we design a dynamic weight mechanism. We utilize Naïve Bayes and TF-IDF to implement the reasoning method and the weighted score calculation. The proposed method reasons the syndrome results by calculating the possibility according to the weighted score of the path in the knowledge graph based on the reasoning path patterns. We evaluate the method with clinical records and clinical practice in hospitals. The preliminary results suggest that the method achieves high performance and can help TCM doctors make better diagnosis decisions in practice. Meanwhile, the method is robust and explainable under the guide of the knowledge graph. It could help TCM physicians, especially primary physicians in rural areas, and provide clinical decision support in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹外桃花完成签到,获得积分10
1秒前
blue完成签到,获得积分10
1秒前
hkh发布了新的文献求助10
1秒前
wkz驳回了Hello应助
1秒前
2秒前
2秒前
葛力发布了新的文献求助10
2秒前
2秒前
右声道发布了新的文献求助10
3秒前
3秒前
pcb完成签到,获得积分10
3秒前
小娟发布了新的文献求助10
3秒前
3秒前
竹外桃花发布了新的文献求助10
4秒前
4秒前
孙国庆关注了科研通微信公众号
4秒前
zhengxi发布了新的文献求助30
4秒前
酷炫的电源完成签到 ,获得积分10
4秒前
pluto应助学术垃圾制造者采纳,获得50
5秒前
qsxy发布了新的文献求助10
5秒前
科研通AI2S应助尉迟希望采纳,获得10
5秒前
猪猪hero发布了新的文献求助10
5秒前
lllwhannah完成签到,获得积分20
6秒前
6秒前
lxh发布了新的文献求助10
6秒前
6秒前
6秒前
guons发布了新的文献求助10
7秒前
CipherSage应助Lychee采纳,获得10
7秒前
7秒前
畅快的胡萝卜完成签到,获得积分10
7秒前
7秒前
小奋青完成签到 ,获得积分10
8秒前
曹成云完成签到,获得积分10
8秒前
xhm发布了新的文献求助30
8秒前
8秒前
9秒前
wen完成签到,获得积分10
10秒前
黄菠萝完成签到,获得积分10
10秒前
淳于越泽发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128